101 lines
5.1 KiB
Python
101 lines
5.1 KiB
Python
"""
|
|
List of default args which mught be useful for all the available flags
|
|
Might need to update with the new flags
|
|
"""
|
|
|
|
import os
|
|
|
|
|
|
def add_default_args(parser, root_dir, rand_seed=None, possible_model_names=None):
|
|
# training, test, val check intervals
|
|
parser.add_argument('--eval_test_set', dest='eval_test_set', action='store_true',
|
|
help='true = run test set also')
|
|
parser.add_argument('--check_val_every_n_epoch', default=1, type=int,
|
|
help='check val every n epochs')
|
|
parser.opt_list('--accumulate_grad_batches', default=1, type=int, tunable=False,
|
|
help='accumulates gradients k times before applying update.'
|
|
' Simulates huge batch size')
|
|
parser.add_argument('--max_epochs', default=200, type=int,
|
|
help='maximum number of epochs')
|
|
parser.add_argument('--min_epochs', default=2, type=int,
|
|
help='minimum number of epochs')
|
|
parser.add_argument('--train_percent_check', default=1.0, type=float,
|
|
help='how much of training set to check')
|
|
parser.add_argument('--val_percent_check', default=1.0, type=float,
|
|
help='how much of val set to check')
|
|
parser.add_argument('--test_percent_check', default=1.0, type=float,
|
|
help='how much of test set to check')
|
|
|
|
parser.add_argument('--val_check_interval', default=0.95, type=float,
|
|
help='how much within 1 epoch to check val')
|
|
parser.add_argument('--log_save_interval', default=100, type=int,
|
|
help='how many batches between log saves')
|
|
parser.add_argument('--row_log_interval', default=100, type=int,
|
|
help='add log every k batches')
|
|
|
|
# early stopping
|
|
parser.add_argument('--disable_early_stop', dest='enable_early_stop', action='store_false')
|
|
parser.add_argument('--early_stop_metric', default='val_acc', type=str)
|
|
parser.add_argument('--early_stop_mode', default='min', type=str)
|
|
parser.add_argument('--early_stop_patience', default=3, type=int,
|
|
help='number of epochs until stop')
|
|
|
|
# gradient handling
|
|
parser.add_argument('--gradient_clip_val', default=-1, type=int)
|
|
parser.add_argument('--track_grad_norm', default=-1, type=int,
|
|
help='if > 0, will track this grad norm')
|
|
|
|
# model saving
|
|
parser.add_argument('--model_save_path', default=root_dir + '/model_weights')
|
|
parser.add_argument('--model_save_monitor_value', default='val_acc')
|
|
parser.add_argument('--model_save_monitor_mode', default='max')
|
|
|
|
# model paths
|
|
parser.add_argument('--model_load_weights_path', default=None, type=str)
|
|
|
|
if possible_model_names is not None:
|
|
parser.add_argument('--model_name', default='', help=','.join(possible_model_names))
|
|
|
|
# test_tube settings
|
|
parser.add_argument('-en', '--tt_name', default='pt_test')
|
|
parser.add_argument('-td', '--tt_description', default='pytorch lightning test')
|
|
parser.add_argument('--tt_save_path', default=os.path.join(root_dir, 'test_tube_logs'),
|
|
help='logging dir')
|
|
parser.add_argument('--enable_single_run', dest='single_run', action='store_true')
|
|
parser.add_argument('--nb_hopt_trials', default=1, type=int)
|
|
parser.add_argument('--log_stdout', dest='log_stdout', action='store_true')
|
|
|
|
# GPU
|
|
parser.add_argument('--gpus', default=None, type=str)
|
|
parser.add_argument('--single_run_gpu', dest='single_run_gpu', action='store_true')
|
|
parser.add_argument('--default_tensor_type', default='torch.cuda.FloatTensor', type=str)
|
|
parser.add_argument('--use_amp', dest='use_amp', action='store_true')
|
|
parser.add_argument('--check_grad_nans', dest='check_grad_nans', action='store_true')
|
|
parser.add_argument('--amp_level', default='O2', type=str)
|
|
|
|
# run on hpc
|
|
parser.add_argument('--on_cluster', dest='on_cluster', action='store_true')
|
|
|
|
# FAST training
|
|
# use these settings to make sure network has no bugs without running a full dataset
|
|
parser.add_argument('--fast_dev_run', dest='fast_dev_run', default=False, action='store_true',
|
|
help='runs validation after 1 training step')
|
|
parser.add_argument('--enable_tqdm', dest='enable_tqdm', default=False, action='store_true',
|
|
help='false removes the progress bar')
|
|
parser.add_argument('--overfit', default=-1, type=float,
|
|
help='%% of dataset to use with this option. float, or -1 for none')
|
|
|
|
# debug args
|
|
if rand_seed is not None:
|
|
parser.add_argument('--random_seed', default=rand_seed, type=int)
|
|
|
|
parser.add_argument('--interactive', dest='interactive', action='store_true',
|
|
help='runs on gpu without cluster')
|
|
parser.add_argument('--debug', dest='debug', action='store_true',
|
|
help='enables/disables test tube')
|
|
parser.add_argument('--local', dest='local', action='store_true',
|
|
help='enables local training')
|
|
|
|
# optimizer
|
|
parser.add_argument('--lr_scheduler_milestones', default=None, type=str)
|