""" List of default args which mught be useful for all the available flags Might need to update with the new flags """ import os def add_default_args(parser, root_dir, rand_seed=None, possible_model_names=None): # training, test, val check intervals parser.add_argument('--eval_test_set', dest='eval_test_set', action='store_true', help='true = run test set also') parser.add_argument('--check_val_every_n_epoch', default=1, type=int, help='check val every n epochs') parser.opt_list('--accumulate_grad_batches', default=1, type=int, tunable=False, help='accumulates gradients k times before applying update.' ' Simulates huge batch size') parser.add_argument('--max_epochs', default=200, type=int, help='maximum number of epochs') parser.add_argument('--min_epochs', default=2, type=int, help='minimum number of epochs') parser.add_argument('--train_percent_check', default=1.0, type=float, help='how much of training set to check') parser.add_argument('--val_percent_check', default=1.0, type=float, help='how much of val set to check') parser.add_argument('--test_percent_check', default=1.0, type=float, help='how much of test set to check') parser.add_argument('--val_check_interval', default=0.95, type=float, help='how much within 1 epoch to check val') parser.add_argument('--log_save_interval', default=100, type=int, help='how many batches between log saves') parser.add_argument('--row_log_interval', default=100, type=int, help='add log every k batches') # early stopping parser.add_argument('--disable_early_stop', dest='enable_early_stop', action='store_false') parser.add_argument('--early_stop_metric', default='val_acc', type=str) parser.add_argument('--early_stop_mode', default='min', type=str) parser.add_argument('--early_stop_patience', default=3, type=int, help='number of epochs until stop') # gradient handling parser.add_argument('--gradient_clip_val', default=-1, type=int) parser.add_argument('--track_grad_norm', default=-1, type=int, help='if > 0, will track this grad norm') # model saving parser.add_argument('--model_save_path', default=root_dir + '/model_weights') parser.add_argument('--model_save_monitor_value', default='val_acc') parser.add_argument('--model_save_monitor_mode', default='max') # model paths parser.add_argument('--model_load_weights_path', default=None, type=str) if possible_model_names is not None: parser.add_argument('--model_name', default='', help=','.join(possible_model_names)) # test_tube settings parser.add_argument('-en', '--tt_name', default='pt_test') parser.add_argument('-td', '--tt_description', default='pytorch lightning test') parser.add_argument('--tt_save_path', default=os.path.join(root_dir, 'test_tube_logs'), help='logging dir') parser.add_argument('--enable_single_run', dest='single_run', action='store_true') parser.add_argument('--nb_hopt_trials', default=1, type=int) parser.add_argument('--log_stdout', dest='log_stdout', action='store_true') # GPU parser.add_argument('--gpus', default=None, type=str) parser.add_argument('--single_run_gpu', dest='single_run_gpu', action='store_true') parser.add_argument('--default_tensor_type', default='torch.cuda.FloatTensor', type=str) parser.add_argument('--use_amp', dest='use_amp', action='store_true') parser.add_argument('--check_grad_nans', dest='check_grad_nans', action='store_true') parser.add_argument('--amp_level', default='O2', type=str) # run on hpc parser.add_argument('--on_cluster', dest='on_cluster', action='store_true') # FAST training # use these settings to make sure network has no bugs without running a full dataset parser.add_argument('--fast_dev_run', dest='fast_dev_run', default=False, action='store_true', help='runs validation after 1 training step') parser.add_argument('--enable_tqdm', dest='enable_tqdm', default=False, action='store_true', help='false removes the progress bar') parser.add_argument('--overfit', default=-1, type=float, help='%% of dataset to use with this option. float, or -1 for none') # debug args if rand_seed is not None: parser.add_argument('--random_seed', default=rand_seed, type=int) parser.add_argument('--interactive', dest='interactive', action='store_true', help='runs on gpu without cluster') parser.add_argument('--debug', dest='debug', action='store_true', help='enables/disables test tube') parser.add_argument('--local', dest='local', action='store_true', help='enables local training') # optimizer parser.add_argument('--lr_scheduler_milestones', default=None, type=str)