lightning/pl_examples/bug_report/bug_report_model.ipynb

268 lines
15 KiB
Plaintext

{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"accelerator": "GPU",
"colab": {
"name": "bug_report_model.ipynb",
"provenance": [],
"collapsed_sections": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "rR4_BAUYs3Mb"
},
"source": [
"![image.png]()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "i7XbLCXGkll9"
},
"source": [
"# The Boring Model\n",
"Replicate a bug you experience, using this model.\n",
"\n",
"[Remember! we're always available for support on Slack](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-f6bl2l0l-JYMK3tbAgAmGRrlNr00f1A)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "2LODD6w9ixlT"
},
"source": [
"---\n",
"## Setup env"
]
},
{
"cell_type": "code",
"metadata": {
"id": "zK7-Gg69kMnG"
},
"source": [
"%%capture\n",
"! pip install -qU pytorch-lightning"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "WvuSN5jEbY8P"
},
"source": [
"---\n",
"## Deps"
]
},
{
"cell_type": "code",
"metadata": {
"id": "w4_TYnt_keJi"
},
"source": [
"import os\n",
"\n",
"import torch\n",
"from torch.utils.data import DataLoader, Dataset\n",
"\n",
"from pytorch_lightning import LightningModule, Trainer"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "XrJDukwPtUnS"
},
"source": [
"---\n",
"## Data\n",
"Random data is best for debugging. If you needs special tensor shapes or batch compositions or dataloaders, modify as needed"
]
},
{
"cell_type": "code",
"metadata": {
"id": "hvgTiaZpkvwS"
},
"source": [
"class RandomDataset(Dataset):\n",
" def __init__(self, size, num_samples):\n",
" self.len = num_samples\n",
" self.data = torch.randn(num_samples, size)\n",
"\n",
" def __getitem__(self, index):\n",
" return self.data[index]\n",
"\n",
" def __len__(self):\n",
" return self.len"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "sxVlWjGhl02D"
},
"source": [
"num_samples = 10000"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "V7ELesz1kVQo"
},
"source": [
"class BoringModel(LightningModule):\n",
" def __init__(self):\n",
" super().__init__()\n",
" self.layer = torch.nn.Linear(32, 2)\n",
"\n",
" def forward(self, x):\n",
" return self.layer(x)\n",
"\n",
" def training_step(self, batch, batch_idx):\n",
" loss = self(batch).sum()\n",
" self.log(\"train_loss\", loss)\n",
" return {\"loss\": loss}\n",
"\n",
" def validation_step(self, batch, batch_idx):\n",
" loss = self(batch).sum()\n",
" self.log(\"valid_loss\", loss)\n",
"\n",
" def test_step(self, batch, batch_idx):\n",
" loss = self(batch).sum()\n",
" self.log(\"test_loss\", loss)\n",
"\n",
" def configure_optimizers(self):\n",
" return torch.optim.SGD(self.layer.parameters(), lr=0.1)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "ubvW3LGSupmt"
},
"source": [
"---\n",
"## Define the test"
]
},
{
"cell_type": "code",
"metadata": {
"id": "4Dk6Ykv8lI7X"
},
"source": [
"def run():\n",
" train_data = DataLoader(RandomDataset(32, 64), batch_size=2)\n",
" val_data = DataLoader(RandomDataset(32, 64), batch_size=2)\n",
" test_data = DataLoader(RandomDataset(32, 64), batch_size=2)\n",
"\n",
" model = BoringModel()\n",
" trainer = Trainer(\n",
" default_root_dir=os.getcwd(),\n",
" limit_train_batches=1,\n",
" limit_val_batches=1,\n",
" limit_test_batches=1,\n",
" num_sanity_val_steps=0,\n",
" max_epochs=1,\n",
" enable_model_summary=False,\n",
" )\n",
" trainer.fit(model, train_dataloaders=train_data, val_dataloaders=val_data)\n",
" trainer.test(model, dataloaders=test_data)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "4dPfTZVgmgxz"
},
"source": [
"---\n",
"## Run Test"
]
},
{
"cell_type": "code",
"metadata": {
"id": "AAtq1hwSmjKe"
},
"source": [
"run()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "Flyi--SpvsJN"
},
"source": [
"---\n",
"## Environment\n",
"Run this to get the environment details"
]
},
{
"cell_type": "code",
"metadata": {
"id": "0-yvGFRoaDSi"
},
"source": [
"%%capture\n",
"! wget https://raw.githubusercontent.com/PyTorchLightning/pytorch-lightning/master/requirements/collect_env_details.py"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "quj4LUDgmFvj"
},
"source": [
"! python collect_env_details.py"
],
"execution_count": null,
"outputs": []
}
]
}