{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "accelerator": "GPU", "colab": { "name": "bug_report_model.ipynb", "provenance": [], "collapsed_sections": [] }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "rR4_BAUYs3Mb" }, "source": [ "![image.png]()" ] }, { "cell_type": "markdown", "metadata": { "id": "i7XbLCXGkll9" }, "source": [ "# The Boring Model\n", "Replicate a bug you experience, using this model.\n", "\n", "[Remember! we're always available for support on Slack](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-f6bl2l0l-JYMK3tbAgAmGRrlNr00f1A)" ] }, { "cell_type": "markdown", "metadata": { "id": "2LODD6w9ixlT" }, "source": [ "---\n", "## Setup env" ] }, { "cell_type": "code", "metadata": { "id": "zK7-Gg69kMnG" }, "source": [ "%%capture\n", "! pip install -qU pytorch-lightning" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "WvuSN5jEbY8P" }, "source": [ "---\n", "## Deps" ] }, { "cell_type": "code", "metadata": { "id": "w4_TYnt_keJi" }, "source": [ "import os\n", "\n", "import torch\n", "from torch.utils.data import DataLoader, Dataset\n", "\n", "from pytorch_lightning import LightningModule, Trainer" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "XrJDukwPtUnS" }, "source": [ "---\n", "## Data\n", "Random data is best for debugging. If you needs special tensor shapes or batch compositions or dataloaders, modify as needed" ] }, { "cell_type": "code", "metadata": { "id": "hvgTiaZpkvwS" }, "source": [ "class RandomDataset(Dataset):\n", " def __init__(self, size, num_samples):\n", " self.len = num_samples\n", " self.data = torch.randn(num_samples, size)\n", "\n", " def __getitem__(self, index):\n", " return self.data[index]\n", "\n", " def __len__(self):\n", " return self.len" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "sxVlWjGhl02D" }, "source": [ "num_samples = 10000" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "V7ELesz1kVQo" }, "source": [ "class BoringModel(LightningModule):\n", " def __init__(self):\n", " super().__init__()\n", " self.layer = torch.nn.Linear(32, 2)\n", "\n", " def forward(self, x):\n", " return self.layer(x)\n", "\n", " def training_step(self, batch, batch_idx):\n", " loss = self(batch).sum()\n", " self.log(\"train_loss\", loss)\n", " return {\"loss\": loss}\n", "\n", " def validation_step(self, batch, batch_idx):\n", " loss = self(batch).sum()\n", " self.log(\"valid_loss\", loss)\n", "\n", " def test_step(self, batch, batch_idx):\n", " loss = self(batch).sum()\n", " self.log(\"test_loss\", loss)\n", "\n", " def configure_optimizers(self):\n", " return torch.optim.SGD(self.layer.parameters(), lr=0.1)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "ubvW3LGSupmt" }, "source": [ "---\n", "## Define the test" ] }, { "cell_type": "code", "metadata": { "id": "4Dk6Ykv8lI7X" }, "source": [ "def run():\n", " train_data = DataLoader(RandomDataset(32, 64), batch_size=2)\n", " val_data = DataLoader(RandomDataset(32, 64), batch_size=2)\n", " test_data = DataLoader(RandomDataset(32, 64), batch_size=2)\n", "\n", " model = BoringModel()\n", " trainer = Trainer(\n", " default_root_dir=os.getcwd(),\n", " limit_train_batches=1,\n", " limit_val_batches=1,\n", " limit_test_batches=1,\n", " num_sanity_val_steps=0,\n", " max_epochs=1,\n", " enable_model_summary=False,\n", " )\n", " trainer.fit(model, train_dataloaders=train_data, val_dataloaders=val_data)\n", " trainer.test(model, dataloaders=test_data)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "4dPfTZVgmgxz" }, "source": [ "---\n", "## Run Test" ] }, { "cell_type": "code", "metadata": { "id": "AAtq1hwSmjKe" }, "source": [ "run()" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "Flyi--SpvsJN" }, "source": [ "---\n", "## Environment\n", "Run this to get the environment details" ] }, { "cell_type": "code", "metadata": { "id": "0-yvGFRoaDSi" }, "source": [ "%%capture\n", "! wget https://raw.githubusercontent.com/PyTorchLightning/pytorch-lightning/master/requirements/collect_env_details.py" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "quj4LUDgmFvj" }, "source": [ "! python collect_env_details.py" ], "execution_count": null, "outputs": [] } ] }