69 lines
2.7 KiB
Python
69 lines
2.7 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import pytest
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.trainer.states import RunningStage
|
|
from tests.helpers.boring_model import BoringModel
|
|
|
|
|
|
def test_num_dataloader_batches(tmpdir):
|
|
"""Tests that the correct number of batches are allocated."""
|
|
# when we have fewer batches in the dataloader we should use those instead of the limit
|
|
model = BoringModel()
|
|
trainer = Trainer(limit_val_batches=100, limit_train_batches=100, max_epochs=1, default_root_dir=tmpdir)
|
|
trainer.fit(model)
|
|
|
|
assert len(model.train_dataloader()) == 64
|
|
assert len(model.val_dataloader()) == 64
|
|
assert isinstance(trainer.num_val_batches, list)
|
|
assert trainer.num_val_batches[0] == 64
|
|
assert trainer.num_training_batches == 64
|
|
|
|
# when we have more batches in the dataloader we should limit them
|
|
model = BoringModel()
|
|
trainer = Trainer(limit_val_batches=7, limit_train_batches=7, max_epochs=1, default_root_dir=tmpdir)
|
|
trainer.fit(model)
|
|
|
|
assert len(model.train_dataloader()) == 64
|
|
assert len(model.val_dataloader()) == 64
|
|
assert isinstance(trainer.num_val_batches, list)
|
|
assert trainer.num_val_batches[0] == 7
|
|
assert trainer.num_training_batches == 7
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
["stage", "mode"],
|
|
[
|
|
(RunningStage.VALIDATING, "val"),
|
|
(RunningStage.TESTING, "test"),
|
|
(RunningStage.PREDICTING, "predict"),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("limit_batches", [0.1, 10])
|
|
def test_eval_limit_batches(stage, mode, limit_batches):
|
|
limit_eval_batches = f"limit_{mode}_batches"
|
|
dl_hook = f"{mode}_dataloader"
|
|
model = BoringModel()
|
|
eval_loader = getattr(model, dl_hook)()
|
|
|
|
trainer = Trainer(**{limit_eval_batches: limit_batches})
|
|
model.trainer = trainer
|
|
trainer._data_connector.attach_dataloaders(model)
|
|
loader_num_batches, dataloaders = trainer._reset_eval_dataloader(stage, model=model)
|
|
expected_batches = int(limit_batches * len(eval_loader)) if isinstance(limit_batches, float) else limit_batches
|
|
assert loader_num_batches[0] == expected_batches
|
|
assert len(dataloaders[0]) == len(eval_loader)
|