# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from pytorch_lightning import Trainer from pytorch_lightning.trainer.states import RunningStage from tests.helpers.boring_model import BoringModel def test_num_dataloader_batches(tmpdir): """Tests that the correct number of batches are allocated.""" # when we have fewer batches in the dataloader we should use those instead of the limit model = BoringModel() trainer = Trainer(limit_val_batches=100, limit_train_batches=100, max_epochs=1, default_root_dir=tmpdir) trainer.fit(model) assert len(model.train_dataloader()) == 64 assert len(model.val_dataloader()) == 64 assert isinstance(trainer.num_val_batches, list) assert trainer.num_val_batches[0] == 64 assert trainer.num_training_batches == 64 # when we have more batches in the dataloader we should limit them model = BoringModel() trainer = Trainer(limit_val_batches=7, limit_train_batches=7, max_epochs=1, default_root_dir=tmpdir) trainer.fit(model) assert len(model.train_dataloader()) == 64 assert len(model.val_dataloader()) == 64 assert isinstance(trainer.num_val_batches, list) assert trainer.num_val_batches[0] == 7 assert trainer.num_training_batches == 7 @pytest.mark.parametrize( ["stage", "mode"], [ (RunningStage.VALIDATING, "val"), (RunningStage.TESTING, "test"), (RunningStage.PREDICTING, "predict"), ], ) @pytest.mark.parametrize("limit_batches", [0.1, 10]) def test_eval_limit_batches(stage, mode, limit_batches): limit_eval_batches = f"limit_{mode}_batches" dl_hook = f"{mode}_dataloader" model = BoringModel() eval_loader = getattr(model, dl_hook)() trainer = Trainer(**{limit_eval_batches: limit_batches}) model.trainer = trainer trainer._data_connector.attach_dataloaders(model) loader_num_batches, dataloaders = trainer._reset_eval_dataloader(stage, model=model) expected_batches = int(limit_batches * len(eval_loader)) if isinstance(limit_batches, float) else limit_batches assert loader_num_batches[0] == expected_batches assert len(dataloaders[0]) == len(eval_loader)