lightning/tests/utilities/test_apply_func_torchtext.py

74 lines
2.6 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import torch
from pytorch_lightning.utilities.apply_func import move_data_to_device
from tests.helpers.imports import Dataset, Example, Field, Iterator
from tests.helpers.runif import RunIf
def _get_torchtext_data_iterator(include_lengths=False):
text_field = Field(
sequential=True,
pad_first=False, # nosec
init_token="<s>",
eos_token="</s>", # nosec
include_lengths=include_lengths,
) # nosec
example1 = Example.fromdict({"text": "a b c a c"}, {"text": ("text", text_field)})
example2 = Example.fromdict({"text": "b c a a"}, {"text": ("text", text_field)})
example3 = Example.fromdict({"text": "c b a"}, {"text": ("text", text_field)})
dataset = Dataset([example1, example2, example3], {"text": text_field})
text_field.build_vocab(dataset)
iterator = Iterator(
dataset,
batch_size=3,
sort_key=None,
device=None,
batch_size_fn=None,
train=True,
repeat=False,
shuffle=None,
sort=None,
sort_within_batch=None,
)
return iterator, text_field
@pytest.mark.parametrize("include_lengths", [False, True])
@pytest.mark.parametrize(["device"], [pytest.param(torch.device("cuda", 0))])
@RunIf(min_gpus=1)
def test_batch_move_data_to_device_torchtext_include_lengths(include_lengths, device):
data_iterator, _ = _get_torchtext_data_iterator(include_lengths=include_lengths)
data_iter = iter(data_iterator)
batch = next(data_iter)
batch_on_device = move_data_to_device(batch, device)
if include_lengths:
# tensor with data
assert batch_on_device.text[0].device == device
# tensor with length of data
assert batch_on_device.text[1].device == device
else:
assert batch_on_device.text.device == device
@pytest.mark.parametrize("include_lengths", [False, True])
def test_batch_move_data_to_device_torchtext_include_lengths_cpu(include_lengths):
test_batch_move_data_to_device_torchtext_include_lengths(include_lengths, torch.device("cpu"))