# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import torch from pytorch_lightning.utilities.apply_func import move_data_to_device from tests.helpers.imports import Dataset, Example, Field, Iterator from tests.helpers.runif import RunIf def _get_torchtext_data_iterator(include_lengths=False): text_field = Field( sequential=True, pad_first=False, # nosec init_token="", eos_token="", # nosec include_lengths=include_lengths, ) # nosec example1 = Example.fromdict({"text": "a b c a c"}, {"text": ("text", text_field)}) example2 = Example.fromdict({"text": "b c a a"}, {"text": ("text", text_field)}) example3 = Example.fromdict({"text": "c b a"}, {"text": ("text", text_field)}) dataset = Dataset([example1, example2, example3], {"text": text_field}) text_field.build_vocab(dataset) iterator = Iterator( dataset, batch_size=3, sort_key=None, device=None, batch_size_fn=None, train=True, repeat=False, shuffle=None, sort=None, sort_within_batch=None, ) return iterator, text_field @pytest.mark.parametrize("include_lengths", [False, True]) @pytest.mark.parametrize(["device"], [pytest.param(torch.device("cuda", 0))]) @RunIf(min_gpus=1) def test_batch_move_data_to_device_torchtext_include_lengths(include_lengths, device): data_iterator, _ = _get_torchtext_data_iterator(include_lengths=include_lengths) data_iter = iter(data_iterator) batch = next(data_iter) batch_on_device = move_data_to_device(batch, device) if include_lengths: # tensor with data assert batch_on_device.text[0].device == device # tensor with length of data assert batch_on_device.text[1].device == device else: assert batch_on_device.text.device == device @pytest.mark.parametrize("include_lengths", [False, True]) def test_batch_move_data_to_device_torchtext_include_lengths_cpu(include_lengths): test_batch_move_data_to_device_torchtext_include_lengths(include_lengths, torch.device("cpu"))