lightning/tests/accelerators/test_multi_nodes_gpu.py

131 lines
4.0 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
from unittest import mock
import torch
from tests.helpers.runif import RunIf
ROOT = os.path.join(os.path.dirname(os.path.realpath(__file__)), "..")
sys.path.insert(0, ROOT)
DIR_PATH = os.path.dirname(os.path.realpath(__file__))
from pytorch_lightning import LightningModule # noqa: E402
from pytorch_lightning import Trainer # noqa: E402
from tests.helpers.boring_model import BoringModel # noqa: E402
@RunIf(special=True)
def test_logging_sync_dist_true_ddp(tmpdir):
"""
Tests to ensure that the sync_dist flag works with CPU (should just return the original value)
"""
fake_result = 1
class TestModel(BoringModel):
def training_step(self, batch, batch_idx):
acc = self.step(batch[0])
self.log('foo', torch.tensor(fake_result), on_step=False, on_epoch=True)
return acc
def validation_step(self, batch, batch_idx):
output = self.layer(batch)
loss = self.loss(batch, output)
self.log('bar', torch.tensor(fake_result), on_step=False, on_epoch=True)
return {"x": loss}
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=1,
limit_val_batches=1,
max_epochs=2,
weights_summary=None,
accelerator="ddp",
gpus=1,
num_nodes=2,
)
trainer.fit(model)
assert trainer.logged_metrics['foo'] == fake_result
assert trainer.logged_metrics['bar'] == fake_result
@RunIf(special=True)
@mock.patch.dict(os.environ, {"PL_DEV_DEBUG": "1"})
def test__validation_step__log(tmpdir):
"""
Tests that validation_step can log
"""
class TestModel(BoringModel):
def training_step(self, batch, batch_idx):
acc = self.step(batch)
acc = acc + batch_idx
self.log('a', acc, on_step=True, on_epoch=True)
self.log('a2', 2)
self.training_step_called = True
return acc
def validation_step(self, batch, batch_idx):
acc = self.step(batch)
acc = acc + batch_idx
self.log('b', acc, on_step=True, on_epoch=True)
self.training_step_called = True
def backward(self, loss, optimizer, optimizer_idx):
return LightningModule.backward(self, loss, optimizer, optimizer_idx)
model = TestModel()
model.validation_step_end = None
model.validation_epoch_end = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=2,
log_every_n_steps=1,
weights_summary=None,
accelerator="ddp",
gpus=1,
num_nodes=2,
)
trainer.fit(model)
# make sure all the metrics are available for callbacks
expected_logged_metrics = {
'a2',
'a_step',
'a_epoch',
'b_step/epoch_0',
'b_step/epoch_1',
'b_epoch',
'epoch',
}
logged_metrics = set(trainer.logged_metrics.keys())
assert expected_logged_metrics == logged_metrics
# we don't want to enable val metrics during steps because it is not something that users should do
# on purpose DO NOT allow step_b... it's silly to monitor val step metrics
callback_metrics = set(trainer.callback_metrics.keys())
callback_metrics.remove('debug_epoch')
expected_cb_metrics = {'a', 'a2', 'b', 'a_epoch', 'b_epoch', 'a_step'}
assert expected_cb_metrics == callback_metrics