# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys from unittest import mock import torch from tests.helpers.runif import RunIf ROOT = os.path.join(os.path.dirname(os.path.realpath(__file__)), "..") sys.path.insert(0, ROOT) DIR_PATH = os.path.dirname(os.path.realpath(__file__)) from pytorch_lightning import LightningModule # noqa: E402 from pytorch_lightning import Trainer # noqa: E402 from tests.helpers.boring_model import BoringModel # noqa: E402 @RunIf(special=True) def test_logging_sync_dist_true_ddp(tmpdir): """ Tests to ensure that the sync_dist flag works with CPU (should just return the original value) """ fake_result = 1 class TestModel(BoringModel): def training_step(self, batch, batch_idx): acc = self.step(batch[0]) self.log('foo', torch.tensor(fake_result), on_step=False, on_epoch=True) return acc def validation_step(self, batch, batch_idx): output = self.layer(batch) loss = self.loss(batch, output) self.log('bar', torch.tensor(fake_result), on_step=False, on_epoch=True) return {"x": loss} model = TestModel() trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=1, limit_val_batches=1, max_epochs=2, weights_summary=None, accelerator="ddp", gpus=1, num_nodes=2, ) trainer.fit(model) assert trainer.logged_metrics['foo'] == fake_result assert trainer.logged_metrics['bar'] == fake_result @RunIf(special=True) @mock.patch.dict(os.environ, {"PL_DEV_DEBUG": "1"}) def test__validation_step__log(tmpdir): """ Tests that validation_step can log """ class TestModel(BoringModel): def training_step(self, batch, batch_idx): acc = self.step(batch) acc = acc + batch_idx self.log('a', acc, on_step=True, on_epoch=True) self.log('a2', 2) self.training_step_called = True return acc def validation_step(self, batch, batch_idx): acc = self.step(batch) acc = acc + batch_idx self.log('b', acc, on_step=True, on_epoch=True) self.training_step_called = True def backward(self, loss, optimizer, optimizer_idx): return LightningModule.backward(self, loss, optimizer, optimizer_idx) model = TestModel() model.validation_step_end = None model.validation_epoch_end = None trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=2, max_epochs=2, log_every_n_steps=1, weights_summary=None, accelerator="ddp", gpus=1, num_nodes=2, ) trainer.fit(model) # make sure all the metrics are available for callbacks expected_logged_metrics = { 'a2', 'a_step', 'a_epoch', 'b_step/epoch_0', 'b_step/epoch_1', 'b_epoch', 'epoch', } logged_metrics = set(trainer.logged_metrics.keys()) assert expected_logged_metrics == logged_metrics # we don't want to enable val metrics during steps because it is not something that users should do # on purpose DO NOT allow step_b... it's silly to monitor val step metrics callback_metrics = set(trainer.callback_metrics.keys()) callback_metrics.remove('debug_epoch') expected_cb_metrics = {'a', 'a2', 'b', 'a_epoch', 'b_epoch', 'a_step'} assert expected_cb_metrics == callback_metrics