266 lines
9.8 KiB
Python
266 lines
9.8 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from copy import deepcopy
|
|
|
|
import pytest
|
|
import torch
|
|
from torch.utils.data import DataLoader
|
|
|
|
import tests.helpers.utils as tutils
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.tuner.tuning import Tuner
|
|
from pytorch_lightning.utilities import AMPType
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from tests.base import EvalModelTemplate
|
|
from tests.helpers import BoringDataModule, BoringModel, RandomDataset
|
|
from tests.helpers.datamodules import MNISTDataModule
|
|
from tests.helpers.runif import RunIf
|
|
|
|
|
|
class BatchSizeDataModule(BoringDataModule):
|
|
def __init__(self, batch_size):
|
|
super().__init__()
|
|
if batch_size is not None:
|
|
self.batch_size = batch_size
|
|
|
|
def train_dataloader(self):
|
|
return DataLoader(self.random_train, batch_size=getattr(self, "batch_size", 1))
|
|
|
|
|
|
class BatchSizeModel(BoringModel):
|
|
def __init__(self, batch_size):
|
|
super().__init__()
|
|
if batch_size is not None:
|
|
self.batch_size = batch_size
|
|
|
|
def train_dataloader(self):
|
|
return DataLoader(RandomDataset(32, 64), batch_size=getattr(self, "batch_size", 1))
|
|
|
|
|
|
@pytest.mark.parametrize(["model_bs", "dm_bs"], [(2, -1), (2, 2), (2, None), (None, 2), (16, 16)])
|
|
def test_scale_batch_size_method_with_model_or_datamodule(tmpdir, model_bs, dm_bs):
|
|
"""Test the tuner method `Tuner.scale_batch_size` with a datamodule."""
|
|
trainer = Trainer(default_root_dir=tmpdir, limit_train_batches=1, limit_val_batches=0, max_epochs=1)
|
|
tuner = Tuner(trainer)
|
|
|
|
model = BatchSizeModel(model_bs)
|
|
datamodule = BatchSizeDataModule(dm_bs) if dm_bs != -1 else None
|
|
|
|
new_batch_size = tuner.scale_batch_size(model, mode="binsearch", init_val=4, max_trials=2, datamodule=datamodule)
|
|
assert new_batch_size == 16
|
|
|
|
if model_bs is not None:
|
|
assert model.batch_size == new_batch_size
|
|
if dm_bs == -1:
|
|
# datamodule batch size takes precedence
|
|
assert trainer.train_dataloader.loaders.batch_size == new_batch_size
|
|
if dm_bs not in (-1, None):
|
|
assert datamodule.batch_size == new_batch_size
|
|
assert trainer.train_dataloader.loaders.batch_size == new_batch_size
|
|
|
|
|
|
def test_model_reset_correctly(tmpdir):
|
|
"""Check that model weights are correctly reset after scaling batch size."""
|
|
tutils.reset_seed()
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
# logger file to get meta
|
|
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
|
|
|
|
before_state_dict = deepcopy(model.state_dict())
|
|
|
|
trainer.tuner.scale_batch_size(model, max_trials=5)
|
|
|
|
after_state_dict = model.state_dict()
|
|
|
|
for key in before_state_dict.keys():
|
|
assert torch.all(
|
|
torch.eq(before_state_dict[key], after_state_dict[key])
|
|
), "Model was not reset correctly after scaling batch size"
|
|
|
|
|
|
def test_trainer_reset_correctly(tmpdir):
|
|
"""Check that all trainer parameters are reset correctly after scaling batch size."""
|
|
tutils.reset_seed()
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
# logger file to get meta
|
|
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
|
|
|
|
changed_attributes = [
|
|
"callbacks",
|
|
"checkpoint_callback",
|
|
"current_epoch",
|
|
"limit_train_batches",
|
|
"logger",
|
|
"max_steps",
|
|
"weights_summary",
|
|
]
|
|
expected = {ca: getattr(trainer, ca) for ca in changed_attributes}
|
|
trainer.tuner.scale_batch_size(model, max_trials=5)
|
|
actual = {ca: getattr(trainer, ca) for ca in changed_attributes}
|
|
|
|
assert actual == expected
|
|
|
|
|
|
@RunIf(min_gpus=1)
|
|
@pytest.mark.parametrize("scale_arg", ["power", "binsearch", True])
|
|
def test_auto_scale_batch_size_trainer_arg(tmpdir, scale_arg):
|
|
"""Test possible values for 'batch size auto scaling' Trainer argument."""
|
|
tutils.reset_seed()
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
model = EvalModelTemplate(**hparams)
|
|
before_batch_size = hparams.get("batch_size")
|
|
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, auto_scale_batch_size=scale_arg, gpus=1)
|
|
trainer.tune(model)
|
|
after_batch_size = model.batch_size
|
|
assert before_batch_size != after_batch_size, "Batch size was not altered after running auto scaling of batch size"
|
|
|
|
assert not os.path.exists(tmpdir / "scale_batch_size_temp_model.ckpt")
|
|
|
|
|
|
@RunIf(min_gpus=1)
|
|
@pytest.mark.parametrize("use_hparams", [True, False])
|
|
def test_auto_scale_batch_size_set_model_attribute(tmpdir, use_hparams):
|
|
"""Test that new batch size gets written to the correct hyperparameter attribute."""
|
|
tutils.reset_seed()
|
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
before_batch_size = hparams.get("batch_size")
|
|
|
|
class HparamsEvalModelTemplate(EvalModelTemplate):
|
|
def dataloader(self, *args, **kwargs):
|
|
# artificially set batch_size so we can get a dataloader
|
|
# remove it immediately after, because we want only self.hparams.batch_size
|
|
setattr(self, "batch_size", before_batch_size)
|
|
dataloader = super().dataloader(*args, **kwargs)
|
|
del self.batch_size
|
|
return dataloader
|
|
|
|
datamodule_fit = MNISTDataModule(data_dir=tmpdir, batch_size=before_batch_size)
|
|
|
|
model_class = HparamsEvalModelTemplate if use_hparams else EvalModelTemplate
|
|
model = model_class(**hparams)
|
|
|
|
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, auto_scale_batch_size=True, gpus=1)
|
|
trainer.tune(model, datamodule_fit)
|
|
after_batch_size = model.hparams.batch_size if use_hparams else model.batch_size
|
|
assert trainer.datamodule == datamodule_fit
|
|
assert before_batch_size != after_batch_size
|
|
assert after_batch_size <= len(trainer.train_dataloader.dataset)
|
|
assert datamodule_fit.batch_size == after_batch_size
|
|
|
|
|
|
def test_auto_scale_batch_size_duplicate_attribute_warning(tmpdir):
|
|
"""Test for a warning when model.batch_size and model.hparams.batch_size both present."""
|
|
|
|
class TestModel(BoringModel):
|
|
def __init__(self, batch_size=1):
|
|
super().__init__()
|
|
# now we have model.batch_size and model.hparams.batch_size
|
|
self.batch_size = 1
|
|
self.save_hyperparameters()
|
|
|
|
model = TestModel()
|
|
trainer = Trainer(default_root_dir=tmpdir, max_steps=1, max_epochs=1000, auto_scale_batch_size=True)
|
|
expected_message = "Field `model.batch_size` and `model.hparams.batch_size` are mutually exclusive!"
|
|
with pytest.warns(UserWarning, match=expected_message):
|
|
trainer.tune(model)
|
|
|
|
|
|
@pytest.mark.parametrize("scale_method", ["power", "binsearch"])
|
|
def test_call_to_trainer_method(tmpdir, scale_method):
|
|
"""Test that calling the trainer method itself works."""
|
|
tutils.reset_seed()
|
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
model = EvalModelTemplate(**hparams)
|
|
|
|
before_batch_size = hparams.get("batch_size")
|
|
# logger file to get meta
|
|
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
|
|
|
|
after_batch_size = trainer.tuner.scale_batch_size(model, mode=scale_method, max_trials=5)
|
|
model.batch_size = after_batch_size
|
|
trainer.fit(model)
|
|
|
|
assert before_batch_size != after_batch_size, "Batch size was not altered after running auto scaling of batch size"
|
|
|
|
|
|
def test_error_on_dataloader_passed_to_fit(tmpdir):
|
|
"""Verify that when the auto scale batch size feature raises an error
|
|
if a train dataloader is passed to fit"""
|
|
|
|
# only train passed to fit
|
|
model = EvalModelTemplate()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
limit_val_batches=0.1,
|
|
limit_train_batches=0.2,
|
|
auto_scale_batch_size="power",
|
|
)
|
|
fit_options = dict(train_dataloader=model.dataloader(train=True))
|
|
|
|
with pytest.raises(MisconfigurationException):
|
|
trainer.tune(model, **fit_options)
|
|
|
|
|
|
@RunIf(min_gpus=1, amp_native=True)
|
|
def test_auto_scale_batch_size_with_amp(tmpdir):
|
|
model = EvalModelTemplate()
|
|
batch_size_before = model.batch_size
|
|
trainer = Trainer(default_root_dir=tmpdir, max_steps=1, auto_scale_batch_size=True, gpus=1, precision=16)
|
|
trainer.tune(model)
|
|
batch_size_after = model.batch_size
|
|
assert trainer.amp_backend == AMPType.NATIVE
|
|
assert trainer.scaler is not None
|
|
assert batch_size_after != batch_size_before
|
|
|
|
|
|
def test_scale_batch_size_no_trials(tmpdir):
|
|
"""Check the result is correct even when no trials are run"""
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir, max_epochs=1, limit_val_batches=1, limit_train_batches=1, auto_scale_batch_size="power"
|
|
)
|
|
model = BatchSizeModel(batch_size=2)
|
|
result = trainer.tuner.scale_batch_size(model, max_trials=0)
|
|
assert result == 2
|
|
|
|
|
|
def test_scale_batch_size_fails_with_unavailable_mode(tmpdir):
|
|
"""Check the tuning raises error when called with mode that does not exist."""
|
|
|
|
class TestModel(BoringModel):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.batch_size = 2
|
|
|
|
model = TestModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
limit_val_batches=1,
|
|
limit_train_batches=1,
|
|
auto_scale_batch_size="ThisModeDoesNotExist",
|
|
)
|
|
|
|
with pytest.raises(ValueError, match="could either be `power` or `binsearch`"):
|
|
trainer.tune(model)
|
|
with pytest.raises(ValueError, match="could either be `power` or `binsearch`"):
|
|
trainer.tuner.scale_batch_size(model, mode="ThisModeDoesNotExist")
|