lightning/tests/plugins/test_ddp_plugin_with_comm_h...

142 lines
5.4 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.plugins import DDPPlugin, DDPSpawnPlugin
from pytorch_lightning.utilities import _TORCH_GREATER_EQUAL_1_8, _TORCH_GREATER_EQUAL_1_10
from tests.helpers import BoringModel
from tests.helpers.runif import RunIf
if torch.distributed.is_available() and _TORCH_GREATER_EQUAL_1_8:
from torch.distributed.algorithms.ddp_comm_hooks import default_hooks as default
from torch.distributed.algorithms.ddp_comm_hooks import powerSGD_hook as powerSGD
if torch.distributed.is_available() and _TORCH_GREATER_EQUAL_1_10:
import torch.distributed.algorithms.ddp_comm_hooks.post_localSGD_hook as post_localSGD
@RunIf(skip_windows=True, min_torch="1.9.0", min_gpus=2, special=True)
def test_ddp_fp16_compress_comm_hook(tmpdir):
"""Test for DDP FP16 compress hook."""
model = BoringModel()
training_type_plugin = DDPPlugin(ddp_comm_hook=default.fp16_compress_hook, sync_batchnorm=True)
trainer = Trainer(
max_epochs=1,
gpus=2,
plugins=[training_type_plugin],
default_root_dir=tmpdir,
sync_batchnorm=True,
fast_dev_run=True,
)
trainer.fit(model)
trainer_comm_hook = trainer.accelerator.training_type_plugin._model.get_ddp_logging_data().comm_hook
expected_comm_hook = default.fp16_compress_hook.__qualname__
assert trainer_comm_hook == expected_comm_hook
assert trainer.state.finished, f"Training failed with {trainer.state}"
@RunIf(skip_windows=True, min_torch="1.9.0", min_gpus=2, special=True)
def test_ddp_sgd_comm_hook(tmpdir):
"""Test for DDP FP16 compress hook."""
model = BoringModel()
training_type_plugin = DDPPlugin(
ddp_comm_state=powerSGD.PowerSGDState(process_group=None),
ddp_comm_hook=powerSGD.powerSGD_hook,
sync_batchnorm=True,
)
trainer = Trainer(
max_epochs=1,
gpus=2,
plugins=[training_type_plugin],
default_root_dir=tmpdir,
sync_batchnorm=True,
fast_dev_run=True,
)
trainer.fit(model)
trainer_comm_hook = trainer.accelerator.training_type_plugin._model.get_ddp_logging_data().comm_hook
expected_comm_hook = powerSGD.powerSGD_hook.__qualname__
assert trainer_comm_hook == expected_comm_hook
assert trainer.state.finished, f"Training failed with {trainer.state}"
@RunIf(skip_windows=True, min_torch="1.9.0", min_gpus=2, special=True)
def test_ddp_fp16_compress_wrap_sgd_comm_hook(tmpdir):
"""Test for DDP FP16 compress wrapper for SGD hook."""
model = BoringModel()
training_type_plugin = DDPPlugin(
ddp_comm_state=powerSGD.PowerSGDState(process_group=None),
ddp_comm_hook=powerSGD.powerSGD_hook,
ddp_comm_wrapper=default.fp16_compress_wrapper,
sync_batchnorm=True,
)
trainer = Trainer(
max_epochs=1,
gpus=2,
plugins=[training_type_plugin],
default_root_dir=tmpdir,
sync_batchnorm=True,
fast_dev_run=True,
)
trainer.fit(model)
trainer_comm_hook = trainer.accelerator.training_type_plugin._model.get_ddp_logging_data().comm_hook
expected_comm_hook = default.fp16_compress_wrapper(powerSGD.powerSGD_hook).__qualname__
assert trainer_comm_hook == expected_comm_hook
assert trainer.state.finished, f"Training failed with {trainer.state}"
@RunIf(skip_windows=True, min_torch="1.9.0", min_gpus=2, special=True)
def test_ddp_spawn_fp16_compress_comm_hook(tmpdir):
"""Test for DDP Spawn FP16 compress hook."""
model = BoringModel()
training_type_plugin = DDPSpawnPlugin(ddp_comm_hook=default.fp16_compress_hook, sync_batchnorm=True)
trainer = Trainer(
max_epochs=1,
gpus=2,
plugins=[training_type_plugin],
default_root_dir=tmpdir,
sync_batchnorm=True,
fast_dev_run=True,
)
trainer.fit(model)
assert trainer.state.finished, f"Training failed with {trainer.state}"
@RunIf(skip_windows=True, min_torch="1.10.0", min_gpus=2, special=True)
def test_ddp_post_local_sgd_comm_hook(tmpdir):
"""Test for DDP post-localSGD hook."""
model = BoringModel()
training_type_plugin = DDPPlugin(
ddp_comm_state=post_localSGD.PostLocalSGDState(
process_group=None,
subgroup=None,
start_localSGD_iter=8,
),
ddp_comm_hook=post_localSGD.post_localSGD_hook,
model_averaging_period=4,
sync_batchnorm=True,
)
trainer = Trainer(
fast_dev_run=True,
gpus=2,
plugins=[training_type_plugin],
default_root_dir=tmpdir,
sync_batchnorm=True,
)
trainer.fit(model)
trainer_comm_hook = trainer.accelerator.training_type_plugin._model.get_ddp_logging_data().comm_hook
expected_comm_hook = post_localSGD.post_localSGD_hook.__qualname__
assert trainer_comm_hook == expected_comm_hook
assert trainer.state.finished, f"Training failed with {trainer.state}"