lightning/tests/plugins/test_checkpoint_io_plugin.py

82 lines
3.1 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional
from unittest.mock import MagicMock
import pytest
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.plugins import CheckpointIO, DeepSpeedPlugin, SingleDevicePlugin, TPUSpawnPlugin
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.types import _PATH
from tests.helpers.boring_model import BoringModel
from tests.helpers.runif import RunIf
class CustomCheckpointIO(CheckpointIO):
def save_checkpoint(self, checkpoint: Dict[str, Any], path: _PATH, storage_options: Optional[Any] = None) -> None:
torch.save(checkpoint, path)
def load_checkpoint(self, path: _PATH, storage_options: Optional[Any] = None) -> Dict[str, Any]:
return torch.load(path)
def test_checkpoint_plugin_called(tmpdir):
"""
Ensure that the custom checkpoint IO plugin and torch checkpoint IO plugin is called when saving/loading.
"""
checkpoint_plugin = CustomCheckpointIO()
checkpoint_plugin = MagicMock(wraps=checkpoint_plugin, spec=CustomCheckpointIO)
ck = ModelCheckpoint(dirpath=tmpdir, save_last=True)
model = BoringModel()
device = torch.device("cpu")
trainer = Trainer(
default_root_dir=tmpdir,
plugins=SingleDevicePlugin(device, checkpoint_io=checkpoint_plugin),
callbacks=ck,
max_epochs=1,
)
trainer.fit(model)
assert checkpoint_plugin.save_checkpoint.call_count == 3
trainer.test(model, ckpt_path=ck.last_model_path)
checkpoint_plugin.load_checkpoint.assert_called_with(tmpdir / "last.ckpt")
checkpoint_plugin.reset_mock()
ck = ModelCheckpoint(dirpath=tmpdir, save_last=True)
model = BoringModel()
device = torch.device("cpu")
trainer = Trainer(
default_root_dir=tmpdir,
plugins=[SingleDevicePlugin(device), checkpoint_plugin],
callbacks=ck,
max_epochs=1,
)
trainer.fit(model)
assert checkpoint_plugin.save_checkpoint.call_count == 3
trainer.test(model, ckpt_path=ck.last_model_path)
checkpoint_plugin.load_checkpoint.assert_called_once()
checkpoint_plugin.load_checkpoint.assert_called_with(tmpdir / "last.ckpt")
@pytest.mark.parametrize("plugin_cls", [pytest.param(DeepSpeedPlugin, marks=RunIf(deepspeed=True)), TPUSpawnPlugin])
def test_no_checkpoint_io_plugin_support(plugin_cls):
with pytest.raises(MisconfigurationException, match="currently does not support custom checkpoint plugins"):
plugin_cls().checkpoint_io = CustomCheckpointIO()