70 lines
2.5 KiB
Python
70 lines
2.5 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from collections.abc import Iterable
|
|
|
|
import pytest
|
|
from torch.utils.data import BatchSampler, SequentialSampler
|
|
|
|
from pytorch_lightning import seed_everything
|
|
from pytorch_lightning.overrides.distributed import IndexBatchSamplerWrapper, UnrepeatedDistributedSampler
|
|
from pytorch_lightning.utilities.data import has_len
|
|
|
|
|
|
@pytest.mark.parametrize("shuffle", [False, True])
|
|
def test_unrepeated_distributed_sampler(shuffle, tmpdir):
|
|
"""Test each rank will receive a different number of elements."""
|
|
|
|
seed_everything(42)
|
|
world_size = 4
|
|
samplers = []
|
|
dataset = range(103)
|
|
for rank in range(world_size):
|
|
samplers.append(UnrepeatedDistributedSampler(dataset, rank=rank, num_replicas=world_size, shuffle=shuffle))
|
|
|
|
indices = [list(s) for s in samplers]
|
|
assert len(indices[0]) == 26
|
|
assert len(indices[1]) == 26
|
|
assert len(indices[2]) == 26
|
|
assert len(indices[3]) == 25
|
|
|
|
assert indices[0][-1] == 18 if shuffle else 100
|
|
assert indices[1][-1] == 30 if shuffle else 101
|
|
assert indices[2][-1] == 29 if shuffle else 102
|
|
assert indices[3][-1] == 35 if shuffle else 99
|
|
|
|
|
|
def test_index_batch_sampler(tmpdir):
|
|
"""Test `IndexBatchSampler` properly extracts indices."""
|
|
dataset = range(15)
|
|
sampler = SequentialSampler(dataset)
|
|
batch_sampler = BatchSampler(sampler, 3, False)
|
|
index_batch_sampler = IndexBatchSamplerWrapper(batch_sampler)
|
|
|
|
assert batch_sampler.batch_size == index_batch_sampler.batch_size
|
|
assert batch_sampler.drop_last == index_batch_sampler.drop_last
|
|
assert batch_sampler.sampler is sampler
|
|
|
|
for batch in index_batch_sampler:
|
|
assert index_batch_sampler.batch_indices == batch
|
|
|
|
|
|
def test_index_batch_sampler_methods():
|
|
dataset = range(15)
|
|
sampler = SequentialSampler(dataset)
|
|
batch_sampler = BatchSampler(sampler, 3, False)
|
|
index_batch_sampler = IndexBatchSamplerWrapper(batch_sampler)
|
|
|
|
assert isinstance(index_batch_sampler, Iterable)
|
|
assert has_len(index_batch_sampler)
|