lightning/tests/overrides/test_distributed.py

70 lines
2.5 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Iterable
import pytest
from torch.utils.data import BatchSampler, SequentialSampler
from pytorch_lightning import seed_everything
from pytorch_lightning.overrides.distributed import IndexBatchSamplerWrapper, UnrepeatedDistributedSampler
from pytorch_lightning.utilities.data import has_len
@pytest.mark.parametrize("shuffle", [False, True])
def test_unrepeated_distributed_sampler(shuffle, tmpdir):
"""Test each rank will receive a different number of elements."""
seed_everything(42)
world_size = 4
samplers = []
dataset = range(103)
for rank in range(world_size):
samplers.append(UnrepeatedDistributedSampler(dataset, rank=rank, num_replicas=world_size, shuffle=shuffle))
indices = [list(s) for s in samplers]
assert len(indices[0]) == 26
assert len(indices[1]) == 26
assert len(indices[2]) == 26
assert len(indices[3]) == 25
assert indices[0][-1] == 18 if shuffle else 100
assert indices[1][-1] == 30 if shuffle else 101
assert indices[2][-1] == 29 if shuffle else 102
assert indices[3][-1] == 35 if shuffle else 99
def test_index_batch_sampler(tmpdir):
"""Test `IndexBatchSampler` properly extracts indices."""
dataset = range(15)
sampler = SequentialSampler(dataset)
batch_sampler = BatchSampler(sampler, 3, False)
index_batch_sampler = IndexBatchSamplerWrapper(batch_sampler)
assert batch_sampler.batch_size == index_batch_sampler.batch_size
assert batch_sampler.drop_last == index_batch_sampler.drop_last
assert batch_sampler.sampler is sampler
for batch in index_batch_sampler:
assert index_batch_sampler.batch_indices == batch
def test_index_batch_sampler_methods():
dataset = range(15)
sampler = SequentialSampler(dataset)
batch_sampler = BatchSampler(sampler, 3, False)
index_batch_sampler = IndexBatchSamplerWrapper(batch_sampler)
assert isinstance(index_batch_sampler, Iterable)
assert has_len(index_batch_sampler)