252 lines
8.9 KiB
Python
252 lines
8.9 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import pickle
|
|
from argparse import ArgumentParser
|
|
from unittest import mock
|
|
|
|
import pytest
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.loggers import WandbLogger
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from tests.helpers import BoringModel
|
|
|
|
|
|
@mock.patch("pytorch_lightning.loggers.wandb.wandb")
|
|
def test_wandb_logger_init(wandb):
|
|
"""Verify that basic functionality of wandb logger works.
|
|
Wandb doesn't work well with pytest so we have to mock it out here."""
|
|
|
|
# test wandb.init called when there is no W&B run
|
|
wandb.run = None
|
|
logger = WandbLogger(
|
|
name="test_name", save_dir="test_save_dir", version="test_id", project="test_project", resume="never"
|
|
)
|
|
logger.log_metrics({"acc": 1.0})
|
|
wandb.init.assert_called_once_with(
|
|
name="test_name", dir="test_save_dir", id="test_id", project="test_project", resume="never", anonymous=None
|
|
)
|
|
wandb.init().log.assert_called_once_with({"acc": 1.0})
|
|
|
|
# test wandb.init and setting logger experiment externally
|
|
wandb.run = None
|
|
run = wandb.init()
|
|
logger = WandbLogger(experiment=run)
|
|
assert logger.experiment
|
|
|
|
# test wandb.init not called if there is a W&B run
|
|
wandb.init().log.reset_mock()
|
|
wandb.init.reset_mock()
|
|
wandb.run = wandb.init()
|
|
logger = WandbLogger()
|
|
|
|
# verify default resume value
|
|
assert logger._wandb_init["resume"] == "allow"
|
|
|
|
with pytest.warns(UserWarning, match="There is a wandb run already in progress"):
|
|
_ = logger.experiment
|
|
|
|
logger.log_metrics({"acc": 1.0}, step=3)
|
|
wandb.init.assert_called_once()
|
|
wandb.init().log.assert_called_once_with({"acc": 1.0, "trainer/global_step": 3})
|
|
|
|
# continue training on same W&B run and offset step
|
|
logger.finalize("success")
|
|
logger.log_metrics({"acc": 1.0}, step=6)
|
|
wandb.init().log.assert_called_with({"acc": 1.0, "trainer/global_step": 6})
|
|
|
|
# log hyper parameters
|
|
logger.log_hyperparams({"test": None, "nested": {"a": 1}, "b": [2, 3, 4]})
|
|
wandb.init().config.update.assert_called_once_with(
|
|
{"test": "None", "nested/a": 1, "b": [2, 3, 4]}, allow_val_change=True
|
|
)
|
|
|
|
# watch a model
|
|
logger.watch("model", "log", 10, False)
|
|
wandb.init().watch.assert_called_once_with("model", log="log", log_freq=10, log_graph=False)
|
|
|
|
assert logger.name == wandb.init().project_name()
|
|
assert logger.version == wandb.init().id
|
|
|
|
|
|
@mock.patch("pytorch_lightning.loggers.wandb.wandb")
|
|
def test_wandb_pickle(wandb, tmpdir):
|
|
"""
|
|
Verify that pickling trainer with wandb logger works.
|
|
Wandb doesn't work well with pytest so we have to mock it out here.
|
|
"""
|
|
|
|
class Experiment:
|
|
id = "the_id"
|
|
step = 0
|
|
dir = "wandb"
|
|
|
|
def project_name(self):
|
|
return "the_project_name"
|
|
|
|
wandb.run = None
|
|
wandb.init.return_value = Experiment()
|
|
logger = WandbLogger(id="the_id", offline=True)
|
|
|
|
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, logger=logger)
|
|
# Access the experiment to ensure it's created
|
|
assert trainer.logger.experiment, "missing experiment"
|
|
assert trainer.log_dir == logger.save_dir
|
|
pkl_bytes = pickle.dumps(trainer)
|
|
trainer2 = pickle.loads(pkl_bytes)
|
|
|
|
assert os.environ["WANDB_MODE"] == "dryrun"
|
|
assert trainer2.logger.__class__.__name__ == WandbLogger.__name__
|
|
assert trainer2.logger.experiment, "missing experiment"
|
|
|
|
wandb.init.assert_called()
|
|
assert "id" in wandb.init.call_args[1]
|
|
assert wandb.init.call_args[1]["id"] == "the_id"
|
|
|
|
del os.environ["WANDB_MODE"]
|
|
|
|
|
|
@mock.patch("pytorch_lightning.loggers.wandb.wandb")
|
|
def test_wandb_logger_dirs_creation(wandb, tmpdir):
|
|
"""Test that the logger creates the folders and files in the right place."""
|
|
logger = WandbLogger(save_dir=str(tmpdir), offline=True)
|
|
assert logger.version is None
|
|
assert logger.name is None
|
|
|
|
# mock return values of experiment
|
|
wandb.run = None
|
|
logger.experiment.id = "1"
|
|
logger.experiment.project_name.return_value = "project"
|
|
|
|
for _ in range(2):
|
|
_ = logger.experiment
|
|
|
|
assert logger.version == "1"
|
|
assert logger.name == "project"
|
|
assert str(tmpdir) == logger.save_dir
|
|
assert not os.listdir(tmpdir)
|
|
|
|
version = logger.version
|
|
model = BoringModel()
|
|
trainer = Trainer(default_root_dir=tmpdir, logger=logger, max_epochs=1, limit_train_batches=3, limit_val_batches=3)
|
|
assert trainer.log_dir == logger.save_dir
|
|
trainer.fit(model)
|
|
|
|
assert trainer.checkpoint_callback.dirpath == str(tmpdir / "project" / version / "checkpoints")
|
|
assert set(os.listdir(trainer.checkpoint_callback.dirpath)) == {"epoch=0-step=2.ckpt"}
|
|
assert trainer.log_dir == logger.save_dir
|
|
|
|
|
|
@mock.patch("pytorch_lightning.loggers.wandb.wandb")
|
|
def test_wandb_log_model(wandb, tmpdir):
|
|
"""Test that the logger creates the folders and files in the right place."""
|
|
|
|
wandb.run = None
|
|
model = BoringModel()
|
|
|
|
# test log_model=True
|
|
logger = WandbLogger(log_model=True)
|
|
logger.experiment.id = "1"
|
|
logger.experiment.project_name.return_value = "project"
|
|
trainer = Trainer(default_root_dir=tmpdir, logger=logger, max_epochs=2, limit_train_batches=3, limit_val_batches=3)
|
|
trainer.fit(model)
|
|
wandb.init().log_artifact.assert_called_once()
|
|
|
|
# test log_model='all'
|
|
wandb.init().log_artifact.reset_mock()
|
|
wandb.init.reset_mock()
|
|
logger = WandbLogger(log_model="all")
|
|
logger.experiment.id = "1"
|
|
logger.experiment.project_name.return_value = "project"
|
|
trainer = Trainer(default_root_dir=tmpdir, logger=logger, max_epochs=2, limit_train_batches=3, limit_val_batches=3)
|
|
trainer.fit(model)
|
|
assert wandb.init().log_artifact.call_count == 2
|
|
|
|
# test log_model=False
|
|
wandb.init().log_artifact.reset_mock()
|
|
wandb.init.reset_mock()
|
|
logger = WandbLogger(log_model=False)
|
|
logger.experiment.id = "1"
|
|
logger.experiment.project_name.return_value = "project"
|
|
trainer = Trainer(default_root_dir=tmpdir, logger=logger, max_epochs=2, limit_train_batches=3, limit_val_batches=3)
|
|
trainer.fit(model)
|
|
assert not wandb.init().log_artifact.called
|
|
|
|
# test correct metadata
|
|
import pytorch_lightning.loggers.wandb as pl_wandb
|
|
|
|
pl_wandb._WANDB_GREATER_EQUAL_0_10_22 = True
|
|
wandb.init().log_artifact.reset_mock()
|
|
wandb.init.reset_mock()
|
|
wandb.Artifact.reset_mock()
|
|
logger = pl_wandb.WandbLogger(log_model=True)
|
|
logger.experiment.id = "1"
|
|
logger.experiment.project_name.return_value = "project"
|
|
trainer = Trainer(default_root_dir=tmpdir, logger=logger, max_epochs=2, limit_train_batches=3, limit_val_batches=3)
|
|
trainer.fit(model)
|
|
wandb.Artifact.assert_called_once_with(
|
|
name="model-1",
|
|
type="model",
|
|
metadata={
|
|
"score": None,
|
|
"original_filename": "epoch=1-step=5-v3.ckpt",
|
|
"ModelCheckpoint": {
|
|
"monitor": None,
|
|
"mode": "min",
|
|
"save_last": None,
|
|
"save_top_k": 1,
|
|
"save_weights_only": False,
|
|
"_every_n_train_steps": 0,
|
|
},
|
|
},
|
|
)
|
|
|
|
|
|
def test_wandb_sanitize_callable_params(tmpdir):
|
|
"""
|
|
Callback function are not serializiable. Therefore, we get them a chance to return
|
|
something and if the returned type is not accepted, return None.
|
|
"""
|
|
opt = "--max_epochs 1".split(" ")
|
|
parser = ArgumentParser()
|
|
parser = Trainer.add_argparse_args(parent_parser=parser)
|
|
params = parser.parse_args(opt)
|
|
|
|
def return_something():
|
|
return "something"
|
|
|
|
params.something = return_something
|
|
|
|
def wrapper_something():
|
|
return return_something
|
|
|
|
params.wrapper_something_wo_name = lambda: lambda: "1"
|
|
params.wrapper_something = wrapper_something
|
|
|
|
params = WandbLogger._convert_params(params)
|
|
params = WandbLogger._flatten_dict(params)
|
|
params = WandbLogger._sanitize_callable_params(params)
|
|
assert params["gpus"] == "None"
|
|
assert params["something"] == "something"
|
|
assert params["wrapper_something"] == "wrapper_something"
|
|
assert params["wrapper_something_wo_name"] == "<lambda>"
|
|
|
|
|
|
@mock.patch("pytorch_lightning.loggers.wandb.wandb")
|
|
def test_wandb_logger_offline_log_model(wandb, tmpdir):
|
|
"""Test that log_model=True raises an error in offline mode"""
|
|
with pytest.raises(MisconfigurationException, match="checkpoints cannot be uploaded in offline mode"):
|
|
_ = WandbLogger(save_dir=str(tmpdir), offline=True, log_model=True)
|