lightning/tests/callbacks/test_lambda_function.py

67 lines
2.0 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from pytorch_lightning import seed_everything, Trainer
from pytorch_lightning.callbacks import Callback, LambdaCallback
from tests.helpers.boring_model import BoringModel
from tests.models.test_hooks import get_members
def test_lambda_call(tmpdir):
seed_everything(42)
class CustomModel(BoringModel):
def on_train_epoch_start(self):
if self.current_epoch > 1:
raise KeyboardInterrupt
checker = set()
def call(hook, *_, **__):
checker.add(hook)
hooks = get_members(Callback)
hooks_args = {h: partial(call, h) for h in hooks}
hooks_args["on_save_checkpoint"] = lambda *_: [checker.add("on_save_checkpoint")]
model = CustomModel()
# successful run
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=1,
limit_val_batches=1,
callbacks=[LambdaCallback(**hooks_args)],
)
trainer.fit(model)
# raises KeyboardInterrupt and loads from checkpoint
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=3,
limit_train_batches=1,
limit_val_batches=1,
limit_test_batches=1,
limit_predict_batches=1,
resume_from_checkpoint=trainer.checkpoint_callback.best_model_path,
callbacks=[LambdaCallback(**hooks_args)],
)
trainer.fit(model)
trainer.test(model)
trainer.predict(model)
assert checker == hooks