451 lines
17 KiB
Python
451 lines
17 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from collections import OrderedDict
|
|
|
|
import pytest
|
|
import torch
|
|
from torch import nn
|
|
from torch.optim import Optimizer, SGD
|
|
from torch.utils.data import DataLoader
|
|
|
|
from pytorch_lightning import LightningModule, seed_everything, Trainer
|
|
from pytorch_lightning.callbacks import BackboneFinetuning, BaseFinetuning, ModelCheckpoint
|
|
from pytorch_lightning.callbacks.base import Callback
|
|
from tests.helpers import BoringModel, RandomDataset
|
|
|
|
|
|
class TestBackboneFinetuningCallback(BackboneFinetuning):
|
|
def on_train_epoch_start(self, trainer, pl_module):
|
|
super().on_train_epoch_start(trainer, pl_module)
|
|
epoch = trainer.current_epoch
|
|
if self.unfreeze_backbone_at_epoch <= epoch:
|
|
optimizer = trainer.optimizers[0]
|
|
current_lr = optimizer.param_groups[0]["lr"]
|
|
backbone_lr = self.previous_backbone_lr
|
|
if epoch < 6:
|
|
assert backbone_lr <= current_lr
|
|
else:
|
|
assert backbone_lr == current_lr
|
|
|
|
|
|
def test_finetuning_callback(tmpdir):
|
|
"""Test finetuning callbacks works as expected"""
|
|
|
|
seed_everything(42)
|
|
|
|
class FinetuningBoringModel(BoringModel):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.backbone = nn.Sequential(nn.Linear(32, 32, bias=False), nn.BatchNorm1d(32), nn.ReLU())
|
|
self.layer = torch.nn.Linear(32, 2)
|
|
self.backbone.has_been_used = False
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
output = self(batch)
|
|
loss = self.loss(batch, output)
|
|
return {"loss": loss}
|
|
|
|
def forward(self, x):
|
|
self.backbone.has_been_used = True
|
|
x = self.backbone(x)
|
|
return self.layer(x)
|
|
|
|
def configure_optimizers(self):
|
|
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.7)
|
|
return [optimizer], [lr_scheduler]
|
|
|
|
def train_dataloader(self):
|
|
return DataLoader(RandomDataset(32, 64), batch_size=2)
|
|
|
|
model = FinetuningBoringModel()
|
|
callback = TestBackboneFinetuningCallback(unfreeze_backbone_at_epoch=3, verbose=False)
|
|
|
|
trainer = Trainer(limit_train_batches=4, default_root_dir=tmpdir, callbacks=[callback], max_epochs=8)
|
|
trainer.fit(model)
|
|
|
|
assert model.backbone.has_been_used
|
|
|
|
|
|
class TestBackboneFinetuningWarningCallback(BackboneFinetuning):
|
|
def finetune_function(self, pl_module, epoch: int, optimizer, opt_idx: int):
|
|
"""Called when the epoch begins."""
|
|
|
|
if epoch == 0:
|
|
self.unfreeze_and_add_param_group(
|
|
pl_module.backbone, optimizer, 0.1, train_bn=self.train_bn, initial_denom_lr=self.initial_denom_lr
|
|
)
|
|
|
|
|
|
def test_finetuning_callback_warning(tmpdir):
|
|
"""Test finetuning callbacks works as expected"""
|
|
|
|
seed_everything(42)
|
|
|
|
class FinetuningBoringModel(BoringModel):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.backbone = nn.Linear(32, 2, bias=False)
|
|
self.layer = None
|
|
self.backbone.has_been_used = False
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
output = self(batch)
|
|
loss = self.loss(batch, output)
|
|
return {"loss": loss}
|
|
|
|
def forward(self, x):
|
|
self.backbone.has_been_used = True
|
|
x = self.backbone(x)
|
|
return x
|
|
|
|
def train_dataloader(self):
|
|
return DataLoader(RandomDataset(32, 64), batch_size=2)
|
|
|
|
def configure_optimizers(self):
|
|
optimizer = torch.optim.SGD(self.parameters(), lr=0.1)
|
|
return optimizer
|
|
|
|
chk = ModelCheckpoint(dirpath=tmpdir, save_last=True)
|
|
|
|
model = FinetuningBoringModel()
|
|
model.validation_step = None
|
|
callback = TestBackboneFinetuningWarningCallback(unfreeze_backbone_at_epoch=3, verbose=False)
|
|
|
|
with pytest.warns(UserWarning, match="Did you init your optimizer in"):
|
|
trainer = Trainer(limit_train_batches=1, default_root_dir=tmpdir, callbacks=[callback, chk], max_epochs=2)
|
|
trainer.fit(model)
|
|
|
|
assert model.backbone.has_been_used
|
|
trainer = Trainer(max_epochs=3, resume_from_checkpoint=chk.last_model_path)
|
|
trainer.fit(model)
|
|
|
|
|
|
def test_freeze_unfreeze_function(tmpdir):
|
|
"""Test freeze properly sets requires_grad on the modules"""
|
|
|
|
seed_everything(42)
|
|
|
|
class FreezeModel(LightningModule):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.backbone = nn.Sequential(nn.Linear(32, 32), nn.BatchNorm1d(32), nn.ReLU(), nn.Linear(32, 2))
|
|
|
|
model = FreezeModel()
|
|
BaseFinetuning.freeze(model, train_bn=True)
|
|
assert not model.backbone[0].weight.requires_grad
|
|
assert model.backbone[1].weight.requires_grad
|
|
assert not model.backbone[3].weight.requires_grad
|
|
|
|
BaseFinetuning.freeze(model, train_bn=False)
|
|
assert not model.backbone[0].weight.requires_grad
|
|
assert not model.backbone[1].weight.requires_grad
|
|
assert not model.backbone[3].weight.requires_grad
|
|
|
|
BaseFinetuning.make_trainable(model)
|
|
assert model.backbone[0].weight.requires_grad
|
|
assert model.backbone[1].weight.requires_grad
|
|
assert model.backbone[3].weight.requires_grad
|
|
|
|
BaseFinetuning.freeze(model.backbone[0], train_bn=False)
|
|
assert not model.backbone[0].weight.requires_grad
|
|
|
|
BaseFinetuning.freeze(([(model.backbone[1]), [model.backbone[3]]]), train_bn=True)
|
|
assert model.backbone[1].weight.requires_grad
|
|
assert not model.backbone[3].weight.requires_grad
|
|
|
|
|
|
def test_unfreeze_and_add_param_group_function(tmpdir):
|
|
"""Test unfreeze_and_add_param_group properly unfreeze parameters and add to the correct param_group"""
|
|
|
|
seed_everything(42)
|
|
|
|
class FreezeModel(LightningModule):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.backbone = nn.Sequential(
|
|
nn.Linear(32, 32, bias=False),
|
|
nn.Linear(32, 32, bias=False),
|
|
nn.Linear(32, 32, bias=False),
|
|
nn.Linear(32, 32, bias=False),
|
|
nn.Linear(32, 32, bias=False),
|
|
nn.BatchNorm1d(32),
|
|
)
|
|
|
|
model = FreezeModel()
|
|
optimizer = SGD(model.backbone[0].parameters(), lr=0.01)
|
|
|
|
with pytest.warns(UserWarning, match="The provided params to be freezed already"):
|
|
BaseFinetuning.unfreeze_and_add_param_group(model.backbone[0], optimizer=optimizer)
|
|
assert optimizer.param_groups[0]["lr"] == 0.01
|
|
|
|
model.backbone[1].weight.requires_grad = False
|
|
BaseFinetuning.unfreeze_and_add_param_group(model.backbone[1], optimizer=optimizer)
|
|
assert len(optimizer.param_groups) == 2
|
|
assert optimizer.param_groups[1]["lr"] == 0.001
|
|
assert torch.equal(optimizer.param_groups[1]["params"][0], model.backbone[1].weight)
|
|
assert model.backbone[1].weight.requires_grad
|
|
|
|
with pytest.warns(UserWarning, match="The provided params to be freezed already"):
|
|
BaseFinetuning.unfreeze_and_add_param_group(model, optimizer=optimizer, lr=100, train_bn=False)
|
|
assert len(optimizer.param_groups) == 3
|
|
assert optimizer.param_groups[2]["lr"] == 100
|
|
assert len(optimizer.param_groups[2]["params"]) == 3
|
|
for group_idx, group in enumerate(optimizer.param_groups):
|
|
if group_idx == 0:
|
|
assert torch.equal(optimizer.param_groups[0]["params"][0], model.backbone[0].weight)
|
|
if group_idx == 2:
|
|
assert torch.equal(optimizer.param_groups[2]["params"][0], model.backbone[2].weight)
|
|
assert torch.equal(optimizer.param_groups[2]["params"][1], model.backbone[3].weight)
|
|
assert torch.equal(optimizer.param_groups[2]["params"][2], model.backbone[4].weight)
|
|
|
|
|
|
class OnEpochLayerFinetuning(BaseFinetuning):
|
|
def freeze_before_training(self, pl_module: LightningModule):
|
|
self.freeze(pl_module.layer)
|
|
|
|
def finetune_function(self, pl_module: LightningModule, epoch: int, optimizer: Optimizer, opt_idx: int):
|
|
self.unfreeze_and_add_param_group(pl_module.layer[epoch + 1], optimizer)
|
|
|
|
|
|
def test_base_finetuning_internal_optimizer_metadata(tmpdir):
|
|
"""Test the param_groups updates are properly saved within the internal state of the BaseFinetuning Callbacks"""
|
|
|
|
seed_everything(42)
|
|
|
|
class FreezeModel(BoringModel):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.layer = nn.Sequential(
|
|
nn.Linear(32, 32, bias=False),
|
|
nn.Linear(32, 32, bias=True),
|
|
nn.Linear(32, 32, bias=False),
|
|
nn.Linear(32, 32, bias=True),
|
|
nn.Linear(32, 32, bias=False),
|
|
nn.Linear(32, 2, bias=True),
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.layer(x)
|
|
|
|
def configure_optimizers(self):
|
|
return torch.optim.SGD(self.layer[0].parameters(), lr=0.1)
|
|
|
|
cb = OnEpochLayerFinetuning()
|
|
chk = ModelCheckpoint(dirpath=tmpdir, save_last=True)
|
|
model = FreezeModel()
|
|
trainer = Trainer(default_root_dir=tmpdir, max_epochs=5, limit_train_batches=1, callbacks=[cb, chk])
|
|
trainer.fit(model)
|
|
assert len(cb._internal_optimizer_metadata[0]) == 6
|
|
assert cb._internal_optimizer_metadata[0][0]["params"] == ["layer.0.weight"]
|
|
assert cb._internal_optimizer_metadata[0][1]["params"] == ["layer.1.weight", "layer.1.bias"]
|
|
assert cb._internal_optimizer_metadata[0][2]["params"] == ["layer.2.weight"]
|
|
assert cb._internal_optimizer_metadata[0][3]["params"] == ["layer.3.weight", "layer.3.bias"]
|
|
assert cb._internal_optimizer_metadata[0][4]["params"] == ["layer.4.weight"]
|
|
assert cb._internal_optimizer_metadata[0][5]["params"] == ["layer.5.weight", "layer.5.bias"]
|
|
|
|
model = FreezeModel()
|
|
cb = OnEpochLayerFinetuning()
|
|
trainer = Trainer(max_epochs=10, resume_from_checkpoint=chk.last_model_path, callbacks=[cb])
|
|
with pytest.raises(IndexError, match="index 6 is out of range"):
|
|
trainer.fit(model)
|
|
|
|
|
|
def test_on_before_accelerator_backend_setup(tmpdir):
|
|
"""
|
|
`on_before_accelerator_backend_setup` hook is used by finetuning callbacks to freeze the model before
|
|
before configure_optimizers function call.
|
|
"""
|
|
|
|
class TestCallback(Callback):
|
|
def on_before_accelerator_backend_setup(self, trainer, pl_module):
|
|
pl_module.on_before_accelerator_backend_setup_called = True
|
|
|
|
class TestModel(BoringModel):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.on_before_accelerator_backend_setup_called = False
|
|
|
|
def configure_optimizers(self):
|
|
assert self.on_before_accelerator_backend_setup_called
|
|
return super().configure_optimizers()
|
|
|
|
model = TestModel()
|
|
callback = TestCallback()
|
|
|
|
trainer = Trainer(default_root_dir=tmpdir, callbacks=[callback], fast_dev_run=True)
|
|
trainer.fit(model)
|
|
|
|
|
|
def test_complex_nested_model():
|
|
"""
|
|
Test flattening, freezing, and thawing of models which contain parent (non-leaf) modules with parameters
|
|
directly themselves rather than exclusively their submodules containing parameters.
|
|
"""
|
|
|
|
class ConvBlock(nn.Module):
|
|
def __init__(self, in_channels, out_channels):
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(in_channels, out_channels, 3)
|
|
self.act = nn.ReLU()
|
|
self.bn = nn.BatchNorm2d(out_channels)
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.act(x)
|
|
return self.bn(x)
|
|
|
|
class ConvBlockParam(nn.Module):
|
|
def __init__(self, in_channels, out_channels):
|
|
super().__init__()
|
|
self.module_dict = nn.ModuleDict({"conv": nn.Conv2d(in_channels, out_channels, 3), "act": nn.ReLU()})
|
|
# add trivial test parameter to convblock to validate parent (non-leaf) module parameter handling
|
|
self.parent_param = nn.Parameter(torch.zeros((1), dtype=torch.float))
|
|
self.bn = nn.BatchNorm2d(out_channels)
|
|
|
|
def forward(self, x):
|
|
x = self.module_dict["conv"](x)
|
|
x = self.module_dict["act"](x)
|
|
return self.bn(x)
|
|
|
|
model = nn.Sequential(
|
|
OrderedDict(
|
|
[("encoder", nn.Sequential(ConvBlockParam(3, 64), ConvBlock(64, 128))), ("decoder", ConvBlock(128, 10))]
|
|
)
|
|
)
|
|
|
|
# There are 10 leaf modules or parent modules w/ parameters in the test model
|
|
assert len(BaseFinetuning.flatten_modules(model)) == 10
|
|
|
|
BaseFinetuning.freeze(model.encoder, train_bn=True)
|
|
assert not model.encoder[0].module_dict["conv"].weight.requires_grad # Validate a leaf module parameter is frozen
|
|
assert not model.encoder[0].parent_param.requires_grad # Validate the parent module parameter is frozen
|
|
assert model.encoder[0].bn.weight.requires_grad
|
|
|
|
BaseFinetuning.make_trainable(model)
|
|
encoder_params = list(BaseFinetuning.filter_params(model.encoder, train_bn=True))
|
|
# The 9 parameters of the encoder are:
|
|
# conv0.weight, conv0.bias, bn0.weight, bn0.bias, parent_param
|
|
# conv1.weight, conv1.bias, bn1.weight, bn1.bias
|
|
assert len(encoder_params) == 9
|
|
|
|
|
|
class TestCallbacksRestoreCallback(BaseFinetuning):
|
|
def freeze_before_training(self, pl_module):
|
|
self.freeze(pl_module.layer[:3])
|
|
|
|
def finetune_function(self, pl_module, epoch, optimizer, opt_idx):
|
|
if epoch >= 1:
|
|
self.unfreeze_and_add_param_group(pl_module.layer[epoch - 1], optimizer)
|
|
|
|
|
|
class FinetuningBoringModel(BoringModel):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.layer = nn.Sequential(nn.Linear(32, 32), nn.Linear(32, 32), nn.Linear(32, 32), nn.Linear(32, 2))
|
|
|
|
def configure_optimizers(self):
|
|
parameters = filter(lambda x: x.requires_grad, self.parameters())
|
|
optimizer = torch.optim.SGD(parameters, lr=0.1)
|
|
return optimizer
|
|
|
|
|
|
def test_callbacks_restore(tmpdir):
|
|
"""
|
|
Test callbacks restore is called after optimizers have been re-created
|
|
but before optimizer states reload
|
|
"""
|
|
chk = ModelCheckpoint(dirpath=tmpdir, save_last=True)
|
|
|
|
model = FinetuningBoringModel()
|
|
callback = TestCallbacksRestoreCallback()
|
|
|
|
trainer_kwargs = dict(
|
|
default_root_dir=tmpdir, limit_train_batches=1, limit_val_batches=1, callbacks=[callback, chk], max_epochs=2
|
|
)
|
|
|
|
trainer = Trainer(**trainer_kwargs)
|
|
trainer.fit(model)
|
|
|
|
# only 1 optimizer
|
|
assert len(callback._internal_optimizer_metadata) == 1
|
|
|
|
# only 2 param groups
|
|
assert len(callback._internal_optimizer_metadata[0]) == 2
|
|
|
|
# original parameters
|
|
assert callback._internal_optimizer_metadata[0][0] == {
|
|
"lr": 0.1,
|
|
"momentum": 0,
|
|
"dampening": 0,
|
|
"weight_decay": 0,
|
|
"nesterov": False,
|
|
"params": ["layer.3.weight", "layer.3.bias"],
|
|
}
|
|
|
|
# new param group
|
|
assert callback._internal_optimizer_metadata[0][1] == {
|
|
"lr": 0.01,
|
|
"momentum": 0,
|
|
"dampening": 0,
|
|
"weight_decay": 0,
|
|
"nesterov": False,
|
|
"params": ["layer.0.weight", "layer.0.bias"],
|
|
}
|
|
|
|
trainer_kwargs["max_epochs"] = 3
|
|
trainer_kwargs["resume_from_checkpoint"] = chk.last_model_path
|
|
|
|
trainer = Trainer(**trainer_kwargs)
|
|
trainer.fit(model)
|
|
|
|
|
|
def test_callbacks_restore_backbone(tmpdir):
|
|
"""
|
|
Test callbacks restore is called after optimizers have been re-created
|
|
but before optimizer states reload
|
|
"""
|
|
|
|
class BackboneBoringModel(BoringModel):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.layer = nn.Linear(32, 2)
|
|
self.backbone = nn.Linear(32, 32)
|
|
|
|
def forward(self, x):
|
|
return self.layer(self.backbone(x))
|
|
|
|
ckpt = ModelCheckpoint(dirpath=tmpdir, save_last=True)
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=1,
|
|
limit_val_batches=1,
|
|
max_epochs=2,
|
|
progress_bar_refresh_rate=0,
|
|
callbacks=[ckpt, BackboneFinetuning(unfreeze_backbone_at_epoch=1)],
|
|
)
|
|
trainer.fit(BackboneBoringModel())
|
|
|
|
# initialize a trainer that continues the previous training
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=1,
|
|
limit_val_batches=1,
|
|
max_epochs=3,
|
|
progress_bar_refresh_rate=0,
|
|
callbacks=BackboneFinetuning(unfreeze_backbone_at_epoch=1),
|
|
resume_from_checkpoint=ckpt.last_model_path,
|
|
)
|
|
trainer.fit(BackboneBoringModel())
|