lightning/tests/accelerators/test_accelerator_connector.py

639 lines
23 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
import os
from typing import Optional
from unittest import mock
import pytest
import torch
import torch.distributed
from pytorch_lightning import Trainer
from pytorch_lightning.accelerators.accelerator import Accelerator
from pytorch_lightning.accelerators.cpu import CPUAccelerator
from pytorch_lightning.accelerators.gpu import GPUAccelerator
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.plugins import (
DDP2Plugin,
DDPPlugin,
DDPShardedPlugin,
DDPSpawnPlugin,
DDPSpawnShardedPlugin,
DeepSpeedPlugin,
ParallelPlugin,
PrecisionPlugin,
SingleDevicePlugin,
)
from pytorch_lightning.plugins.environments import (
KubeflowEnvironment,
LightningEnvironment,
SLURMEnvironment,
TorchElasticEnvironment,
)
from pytorch_lightning.utilities import DistributedType
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.helpers.boring_model import BoringModel
from tests.helpers.runif import RunIf
def test_accelerator_choice_cpu(tmpdir):
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True)
assert isinstance(trainer.accelerator, CPUAccelerator)
assert isinstance(trainer.training_type_plugin, SingleDevicePlugin)
def test_accelerator_choice_ddp_cpu(tmpdir):
trainer = Trainer(fast_dev_run=True, accelerator="ddp_cpu")
assert isinstance(trainer.accelerator, CPUAccelerator)
assert isinstance(trainer.training_type_plugin, DDPSpawnPlugin)
assert isinstance(trainer.training_type_plugin.cluster_environment, LightningEnvironment)
@mock.patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": "0,1"})
@mock.patch("torch.cuda.device_count", return_value=2)
@mock.patch("torch.cuda.is_available", return_value=True)
def test_accelerator_choice_ddp(cuda_available_mock, device_count_mock):
trainer = Trainer(fast_dev_run=True, accelerator="ddp", gpus=1)
assert isinstance(trainer.accelerator, GPUAccelerator)
assert isinstance(trainer.training_type_plugin, DDPPlugin)
assert isinstance(trainer.training_type_plugin.cluster_environment, LightningEnvironment)
@mock.patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": "0,1"})
@mock.patch("torch.cuda.device_count", return_value=2)
@mock.patch("torch.cuda.is_available", return_value=True)
def test_accelerator_choice_ddp_spawn(cuda_available_mock, device_count_mock):
trainer = Trainer(fast_dev_run=True, accelerator="ddp_spawn", gpus=1)
assert isinstance(trainer.accelerator, GPUAccelerator)
assert isinstance(trainer.training_type_plugin, DDPSpawnPlugin)
assert isinstance(trainer.training_type_plugin.cluster_environment, LightningEnvironment)
@RunIf(min_gpus=2)
@mock.patch.dict(
os.environ,
{
"CUDA_VISIBLE_DEVICES": "0,1",
"SLURM_NTASKS": "2",
"SLURM_JOB_NAME": "SOME_NAME",
"SLURM_NODEID": "0",
"SLURM_PROCID": "1",
"SLURM_LOCALID": "1",
},
)
@mock.patch("pytorch_lightning.plugins.DDPPlugin.setup_distributed", autospec=True)
def test_accelerator_choice_ddp_slurm(setup_distributed_mock):
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
assert trainer.accelerator_connector.is_slurm_managing_tasks
assert isinstance(trainer.accelerator, GPUAccelerator)
assert isinstance(trainer.training_type_plugin, DDPPlugin)
assert isinstance(trainer.training_type_plugin.cluster_environment, SLURMEnvironment)
assert trainer.training_type_plugin.cluster_environment.local_rank() == 1
assert trainer.training_type_plugin.task_idx == 1
raise SystemExit()
model = BoringModel()
trainer = Trainer(fast_dev_run=True, accelerator="ddp", gpus=2, callbacks=[CB()])
with pytest.raises(SystemExit):
trainer.fit(model)
@RunIf(min_gpus=2)
@mock.patch.dict(
os.environ,
{
"CUDA_VISIBLE_DEVICES": "0,1",
"SLURM_NTASKS": "2",
"SLURM_JOB_NAME": "SOME_NAME",
"SLURM_NODEID": "0",
"SLURM_PROCID": "1",
"SLURM_LOCALID": "1",
},
)
@mock.patch("torch.cuda.device_count", return_value=2)
@mock.patch("pytorch_lightning.plugins.DDPPlugin.setup_distributed", autospec=True)
def test_accelerator_choice_ddp2_slurm(device_count_mock, setup_distributed_mock):
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
assert trainer.accelerator_connector.is_slurm_managing_tasks
assert isinstance(trainer.accelerator, GPUAccelerator)
assert isinstance(trainer.training_type_plugin, DDP2Plugin)
assert isinstance(trainer.training_type_plugin.cluster_environment, SLURMEnvironment)
assert trainer.training_type_plugin.cluster_environment.local_rank() == 1
assert trainer.training_type_plugin.task_idx == 1
raise SystemExit()
model = BoringModel()
trainer = Trainer(fast_dev_run=True, accelerator="ddp2", gpus=2, callbacks=[CB()])
with pytest.raises(SystemExit):
trainer.fit(model)
@RunIf(min_gpus=1)
@mock.patch.dict(
os.environ,
{
"CUDA_VISIBLE_DEVICES": "0,1",
"WORLD_SIZE": "2",
"LOCAL_WORLD_SIZE": "2",
"RANK": "1",
"LOCAL_RANK": "1",
"GROUP_RANK": "0",
},
)
@mock.patch("torch.cuda.device_count", return_value=2)
@mock.patch("pytorch_lightning.plugins.DDPPlugin.setup_distributed", autospec=True)
def test_accelerator_choice_ddp_te(device_count_mock, setup_distributed_mock):
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
assert isinstance(trainer.accelerator, GPUAccelerator)
assert isinstance(trainer.training_type_plugin, DDPPlugin)
assert isinstance(trainer.training_type_plugin.cluster_environment, TorchElasticEnvironment)
assert trainer.training_type_plugin.cluster_environment.local_rank() == 1
assert trainer.training_type_plugin.task_idx == 1
raise SystemExit()
model = BoringModel()
trainer = Trainer(fast_dev_run=True, accelerator="ddp", gpus=2, callbacks=[CB()])
with pytest.raises(SystemExit):
trainer.fit(model)
@RunIf(min_gpus=1)
@mock.patch.dict(
os.environ,
{
"CUDA_VISIBLE_DEVICES": "0,1",
"WORLD_SIZE": "2",
"LOCAL_WORLD_SIZE": "2",
"RANK": "1",
"LOCAL_RANK": "1",
"GROUP_RANK": "0",
},
)
@mock.patch("torch.cuda.device_count", return_value=2)
@mock.patch("pytorch_lightning.plugins.DDPPlugin.setup_distributed", autospec=True)
def test_accelerator_choice_ddp2_te(device_count_mock, setup_distributed_mock):
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
assert isinstance(trainer.accelerator, GPUAccelerator)
assert isinstance(trainer.training_type_plugin, DDP2Plugin)
assert isinstance(trainer.training_type_plugin.cluster_environment, TorchElasticEnvironment)
assert trainer.training_type_plugin.cluster_environment.local_rank() == 1
assert trainer.training_type_plugin.task_idx == 1
raise SystemExit()
model = BoringModel()
trainer = Trainer(fast_dev_run=True, accelerator="ddp2", gpus=2, callbacks=[CB()])
with pytest.raises(SystemExit):
trainer.fit(model)
@mock.patch.dict(
os.environ, {"WORLD_SIZE": "2", "LOCAL_WORLD_SIZE": "2", "RANK": "1", "LOCAL_RANK": "1", "GROUP_RANK": "0"}
)
@mock.patch("torch.cuda.device_count", return_value=0)
@mock.patch("pytorch_lightning.plugins.DDPPlugin.setup_distributed", autospec=True)
def test_accelerator_choice_ddp_cpu_te(device_count_mock, setup_distributed_mock):
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
assert isinstance(trainer.accelerator, CPUAccelerator)
assert isinstance(trainer.training_type_plugin, DDPPlugin)
assert isinstance(trainer.training_type_plugin.cluster_environment, TorchElasticEnvironment)
assert trainer.training_type_plugin.cluster_environment.local_rank() == 1
assert trainer.training_type_plugin.task_idx == 1
raise SystemExit()
model = BoringModel()
trainer = Trainer(fast_dev_run=True, accelerator="ddp_cpu", num_processes=2, callbacks=[CB()])
with pytest.raises(SystemExit):
trainer.fit(model)
@RunIf(min_gpus=1)
@mock.patch.dict(
os.environ,
{
"CUDA_VISIBLE_DEVICES": "0",
"KUBERNETES_PORT": "tcp://127.0.0.1:443",
"MASTER_ADDR": "1.2.3.4",
"MASTER_PORT": "500",
"WORLD_SIZE": "20",
"RANK": "1",
},
)
@mock.patch("torch.cuda.device_count", return_value=1)
@mock.patch("pytorch_lightning.plugins.DDPPlugin.setup_distributed", autospec=True)
def test_accelerator_choice_ddp_kubeflow(device_count_mock, setup_distributed_mock):
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
assert isinstance(trainer.accelerator, GPUAccelerator)
assert isinstance(trainer.training_type_plugin, DDPPlugin)
assert isinstance(trainer.training_type_plugin.cluster_environment, KubeflowEnvironment)
assert trainer.training_type_plugin.cluster_environment.local_rank() == 0
assert trainer.training_type_plugin.task_idx == 0
raise SystemExit()
model = BoringModel()
trainer = Trainer(fast_dev_run=True, accelerator="ddp", gpus=1, callbacks=[CB()])
with pytest.raises(SystemExit):
trainer.fit(model)
@mock.patch.dict(
os.environ,
{
"KUBERNETES_PORT": "tcp://127.0.0.1:443",
"MASTER_ADDR": "1.2.3.4",
"MASTER_PORT": "500",
"WORLD_SIZE": "20",
"RANK": "1",
},
)
@mock.patch("torch.cuda.device_count", return_value=0)
@mock.patch("pytorch_lightning.plugins.DDPPlugin.setup_distributed", autospec=True)
def test_accelerator_choice_ddp_cpu_kubeflow(device_count_mock, setup_distributed_mock):
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
assert isinstance(trainer.accelerator, CPUAccelerator)
assert isinstance(trainer.training_type_plugin, DDPPlugin)
assert isinstance(trainer.training_type_plugin.cluster_environment, KubeflowEnvironment)
assert trainer.training_type_plugin.cluster_environment.local_rank() == 0
assert trainer.training_type_plugin.task_idx == 0
raise SystemExit()
model = BoringModel()
trainer = Trainer(fast_dev_run=True, accelerator="ddp_cpu", num_processes=1, callbacks=[CB()])
with pytest.raises(SystemExit):
trainer.fit(model)
@mock.patch.dict(
os.environ,
{
"SLURM_NTASKS": "2",
"SLURM_JOB_NAME": "SOME_NAME",
"SLURM_NODEID": "0",
"LOCAL_RANK": "0",
"SLURM_PROCID": "0",
"SLURM_LOCALID": "0",
},
)
@mock.patch("torch.cuda.device_count", return_value=0)
@mock.patch("pytorch_lightning.plugins.DDPPlugin.setup_distributed", autospec=True)
def test_accelerator_choice_ddp_cpu_slurm(device_count_mock, setup_distributed_mock):
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
assert trainer.accelerator_connector.is_slurm_managing_tasks
assert isinstance(trainer.accelerator, CPUAccelerator)
assert isinstance(trainer.training_type_plugin, DDPPlugin)
assert isinstance(trainer.training_type_plugin.cluster_environment, SLURMEnvironment)
assert trainer.training_type_plugin.task_idx == 0
raise SystemExit()
model = BoringModel()
trainer = Trainer(fast_dev_run=True, accelerator="ddp_cpu", num_processes=2, callbacks=[CB()])
with pytest.raises(SystemExit):
trainer.fit(model)
@RunIf(special=True)
def test_accelerator_choice_ddp_cpu_and_plugin(tmpdir):
"""Test that accelerator="ddp_cpu" can work together with an instance of DDPPlugin."""
_test_accelerator_choice_ddp_cpu_and_plugin(tmpdir, ddp_plugin_class=DDPPlugin)
@RunIf(special=True)
def test_accelerator_choice_ddp_cpu_and_plugin_spawn(tmpdir):
"""Test that accelerator="ddp_cpu" can work together with an instance of DDPPSpawnPlugin."""
_test_accelerator_choice_ddp_cpu_and_plugin(tmpdir, ddp_plugin_class=DDPSpawnPlugin)
def _test_accelerator_choice_ddp_cpu_and_plugin(tmpdir, ddp_plugin_class):
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
plugins=[ddp_plugin_class(find_unused_parameters=True)],
fast_dev_run=True,
accelerator="ddp_cpu",
num_processes=2,
)
assert isinstance(trainer.training_type_plugin, ddp_plugin_class)
assert isinstance(trainer.accelerator, CPUAccelerator)
assert trainer.training_type_plugin.num_processes == 2
assert trainer.training_type_plugin.parallel_devices == [torch.device("cpu")] * 2
trainer.fit(model)
@mock.patch.dict(
os.environ,
{
"SLURM_NTASKS": "2",
"SLURM_JOB_NAME": "SOME_NAME",
"SLURM_NODEID": "0",
"LOCAL_RANK": "0",
"SLURM_PROCID": "0",
"SLURM_LOCALID": "0",
},
)
@mock.patch("torch.cuda.device_count", return_value=0)
def test_accelerator_choice_ddp_cpu_custom_cluster(_, tmpdir):
"""Test that we choose the custom cluster even when SLURM or TE flags are around"""
class CustomCluster(LightningEnvironment):
def master_address(self):
return "asdf"
def creates_children(self) -> bool:
return True
trainer = Trainer(
default_root_dir=tmpdir, plugins=[CustomCluster()], fast_dev_run=True, accelerator="ddp_cpu", num_processes=2
)
assert isinstance(trainer.accelerator, CPUAccelerator)
assert isinstance(trainer.training_type_plugin, DDPPlugin)
assert isinstance(trainer.training_type_plugin.cluster_environment, CustomCluster)
@mock.patch.dict(
os.environ,
{"SLURM_NTASKS": "2", "SLURM_JOB_NAME": "SOME_NAME", "SLURM_NODEID": "0", "LOCAL_RANK": "0", "SLURM_LOCALID": "0"},
)
@mock.patch("torch.cuda.device_count", return_value=0)
@mock.patch("pytorch_lightning.plugins.DDPPlugin.setup_distributed", autospec=True)
def test_custom_accelerator(device_count_mock, setup_distributed_mock):
class Accel(Accelerator):
pass
class Prec(PrecisionPlugin):
pass
class TrainTypePlugin(SingleDevicePlugin):
pass
ttp = TrainTypePlugin(device=torch.device("cpu"))
accelerator = Accel(training_type_plugin=ttp, precision_plugin=Prec())
trainer = Trainer(accelerator=accelerator, fast_dev_run=True, num_processes=2)
assert isinstance(trainer.accelerator, Accel)
assert isinstance(trainer.training_type_plugin, TrainTypePlugin)
assert isinstance(trainer.precision_plugin, Prec)
assert trainer.accelerator_connector.training_type_plugin is ttp
class DistributedPlugin(DDPPlugin):
pass
ttp = DistributedPlugin()
accelerator = Accel(training_type_plugin=ttp, precision_plugin=Prec())
trainer = Trainer(accelerator=accelerator, fast_dev_run=True, num_processes=2)
assert isinstance(trainer.accelerator, Accel)
assert isinstance(trainer.training_type_plugin, DistributedPlugin)
assert isinstance(trainer.precision_plugin, Prec)
assert trainer.accelerator_connector.training_type_plugin is ttp
@mock.patch.dict(
os.environ,
{
"SLURM_NTASKS": "2",
"SLURM_JOB_NAME": "SOME_NAME",
"SLURM_NODEID": "0",
"LOCAL_RANK": "0",
"SLURM_PROCID": "0",
"SLURM_LOCALID": "0",
},
)
@mock.patch("torch.cuda.device_count", return_value=0)
@mock.patch("pytorch_lightning.plugins.DDPPlugin.setup_distributed", autospec=True)
def test_dist_backend_accelerator_mapping(device_count_mock, setup_distributed_mock):
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
assert isinstance(trainer.accelerator, CPUAccelerator)
assert isinstance(trainer.training_type_plugin, DDPPlugin)
assert trainer.training_type_plugin.task_idx == 0
raise SystemExit()
model = BoringModel()
trainer = Trainer(fast_dev_run=True, accelerator="ddp_cpu", num_processes=2, callbacks=[CB()])
with pytest.raises(SystemExit):
trainer.fit(model)
@mock.patch("pytorch_lightning.utilities._IS_INTERACTIVE", return_value=True)
@mock.patch("torch.cuda.device_count", return_value=2)
def test_ipython_incompatible_backend_error(*_):
with pytest.raises(MisconfigurationException, match="backend ddp is not compatible"):
Trainer(accelerator="ddp", gpus=2)
with pytest.raises(MisconfigurationException, match="backend ddp2 is not compatible"):
Trainer(accelerator="ddp2", gpus=2)
@mock.patch("pytorch_lightning.utilities._IS_INTERACTIVE", return_value=True)
def test_ipython_compatible_backend(*_):
Trainer(accelerator="ddp_cpu", num_processes=2)
@pytest.mark.parametrize(["accelerator", "plugin"], [("ddp_spawn", "ddp_sharded"), (None, "ddp_sharded")])
def test_plugin_accelerator_choice(accelerator: Optional[str], plugin: str):
"""Ensure that when a plugin and accelerator is passed in, that the plugin takes precedent."""
trainer = Trainer(accelerator=accelerator, plugins=plugin, num_processes=2)
assert isinstance(trainer.accelerator.training_type_plugin, DDPShardedPlugin)
trainer = Trainer(plugins=plugin, num_processes=2)
assert isinstance(trainer.accelerator.training_type_plugin, DDPShardedPlugin)
@pytest.mark.parametrize(
["accelerator", "plugin"],
[
("ddp", DDPPlugin),
("ddp_spawn", DDPSpawnPlugin),
("ddp_sharded", DDPShardedPlugin),
("ddp_sharded_spawn", DDPSpawnShardedPlugin),
pytest.param("deepspeed", DeepSpeedPlugin, marks=RunIf(deepspeed=True)),
],
)
@mock.patch("torch.cuda.is_available", return_value=True)
@mock.patch("torch.cuda.device_count", return_value=2)
@pytest.mark.parametrize("gpus", [1, 2])
def test_accelerator_choice_multi_node_gpu(
mock_is_available, mock_device_count, tmpdir, accelerator: str, plugin: ParallelPlugin, gpus: int
):
trainer = Trainer(accelerator=accelerator, default_root_dir=tmpdir, num_nodes=2, gpus=gpus)
assert isinstance(trainer.training_type_plugin, plugin)
@pytest.mark.skipif(torch.cuda.is_available(), reason="test doesn't require GPU")
def test_accelerator_cpu():
trainer = Trainer(accelerator="cpu")
assert trainer._device_type == "cpu"
assert isinstance(trainer.accelerator, CPUAccelerator)
with pytest.raises(MisconfigurationException, match="You passed `accelerator='gpu'`, but GPUs are not available"):
trainer = Trainer(accelerator="gpu")
with pytest.raises(MisconfigurationException, match="You requested GPUs:"):
trainer = Trainer(accelerator="cpu", gpus=1)
@RunIf(min_gpus=1)
def test_accelerator_gpu():
trainer = Trainer(accelerator="gpu", gpus=1)
assert trainer._device_type == "gpu"
assert isinstance(trainer.accelerator, GPUAccelerator)
with pytest.raises(
MisconfigurationException, match="You passed `accelerator='gpu'`, but you didn't pass `gpus` to `Trainer`"
):
trainer = Trainer(accelerator="gpu")
trainer = Trainer(accelerator="auto", gpus=1)
assert trainer._device_type == "gpu"
assert isinstance(trainer.accelerator, GPUAccelerator)
@RunIf(min_gpus=1)
def test_accelerator_cpu_with_gpus_flag():
trainer = Trainer(accelerator="cpu", gpus=1)
assert trainer._device_type == "cpu"
assert isinstance(trainer.accelerator, CPUAccelerator)
@RunIf(min_gpus=2)
def test_accelerator_cpu_with_multiple_gpus():
trainer = Trainer(accelerator="cpu", gpus=2)
assert trainer._device_type == "cpu"
assert isinstance(trainer.accelerator, CPUAccelerator)
@pytest.mark.parametrize(["devices", "plugin"], [(1, SingleDevicePlugin), (5, DDPSpawnPlugin)])
def test_accelerator_cpu_with_devices(devices, plugin):
trainer = Trainer(accelerator="cpu", devices=devices)
assert trainer.num_processes == devices
assert isinstance(trainer.training_type_plugin, plugin)
assert isinstance(trainer.accelerator, CPUAccelerator)
def test_accelerator_cpu_with_num_processes_priority():
"""Test for checking num_processes takes priority over devices."""
num_processes = 5
with pytest.warns(UserWarning, match="The flag `devices=8` will be ignored,"):
trainer = Trainer(accelerator="cpu", devices=8, num_processes=num_processes)
assert trainer.num_processes == num_processes
@RunIf(min_gpus=2)
@pytest.mark.parametrize(
["devices", "plugin"], [(1, SingleDevicePlugin), ([1], SingleDevicePlugin), (2, DDPSpawnPlugin)]
)
def test_accelerator_gpu_with_devices(devices, plugin):
trainer = Trainer(accelerator="gpu", devices=devices)
assert trainer.gpus == devices
assert isinstance(trainer.training_type_plugin, plugin)
assert isinstance(trainer.accelerator, GPUAccelerator)
@RunIf(min_gpus=1)
def test_accelerator_auto_with_devices_gpu():
trainer = Trainer(accelerator="auto", devices=1)
assert trainer._device_type == "gpu"
assert trainer.gpus == 1
@RunIf(min_gpus=1)
def test_accelerator_gpu_with_gpus_priority():
"""Test for checking `gpus` flag takes priority over `devices`."""
gpus = 1
with pytest.warns(UserWarning, match="The flag `devices=4` will be ignored,"):
trainer = Trainer(accelerator="gpu", devices=4, gpus=gpus)
assert trainer.gpus == gpus
def test_validate_accelerator_and_devices():
with pytest.raises(MisconfigurationException, match="You passed `devices=2` but haven't specified"):
Trainer(accelerator="ddp_cpu", devices=2)
def test_set_devices_if_none_cpu():
trainer = Trainer(accelerator="cpu", num_processes=3)
assert trainer.devices == 3
@RunIf(min_gpus=2)
def test_set_devices_if_none_gpu():
trainer = Trainer(accelerator="gpu", gpus=2)
assert trainer.devices == 2
def test_devices_with_cpu_only_supports_integer():
with pytest.raises(MisconfigurationException, match="The flag `devices` only supports integer"):
Trainer(accelerator="cpu", devices="1,3")
@pytest.mark.parametrize("training_type", ["ddp2", "dp"])
def test_unsupported_distrib_types_on_cpu(training_type):
with pytest.warns(UserWarning, match="is not supported on CPUs, hence setting the distributed type to `ddp`."):
trainer = Trainer(accelerator=training_type, num_processes=2)
assert trainer._distrib_type == DistributedType.DDP
def test_accelerator_ddp_for_cpu(tmpdir):
trainer = Trainer(accelerator="ddp", num_processes=2)
assert isinstance(trainer.accelerator, CPUAccelerator)
assert isinstance(trainer.training_type_plugin, DDPPlugin)
@pytest.mark.parametrize("precision", [1, 12, "invalid"])
def test_validate_precision_type(tmpdir, precision):
with pytest.raises(MisconfigurationException, match=f"Precision {precision} is invalid"):
Trainer(precision=precision)