lightning/tests/accelerators/test_hpu.py

243 lines
7.7 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pytest
import torch
from pytorch_lightning import Callback, seed_everything, Trainer
from pytorch_lightning.accelerators import HPUAccelerator
from pytorch_lightning.strategies.hpu_parallel import HPUParallelStrategy
from pytorch_lightning.strategies.single_hpu import SingleHPUStrategy
from pytorch_lightning.utilities import _HPU_AVAILABLE
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.helpers.boring_model import BoringModel
from tests.helpers.datamodules import ClassifDataModule
from tests.helpers.runif import RunIf
from tests.helpers.simple_models import ClassificationModel
@RunIf(hpu=True)
def test_availability():
assert HPUAccelerator.is_available()
@pytest.mark.skipif(_HPU_AVAILABLE, reason="test requires non-HPU machine")
def test_fail_if_no_hpus():
with pytest.raises(MisconfigurationException, match="HPUAccelerator can not run on your system"):
Trainer(accelerator="hpu", devices=1)
@RunIf(hpu=True)
def test_accelerator_selected():
trainer = Trainer(accelerator="hpu")
assert isinstance(trainer.accelerator, HPUAccelerator)
@RunIf(hpu=True)
def test_all_stages(tmpdir, hpus):
"""Tests all the model stages using BoringModel on HPU."""
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
fast_dev_run=True,
accelerator="hpu",
devices=hpus,
precision=16,
)
trainer.fit(model)
trainer.validate(model)
trainer.test(model)
trainer.predict(model)
@RunIf(hpu=True)
def test_optimization(tmpdir):
seed_everything(42)
dm = ClassifDataModule(length=1024)
model = ClassificationModel()
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, accelerator="hpu", devices=1)
# fit model
trainer.fit(model, dm)
assert trainer.state.finished, f"Training failed with {trainer.state}"
assert dm.trainer is not None
# validate
result = trainer.validate(datamodule=dm)
assert dm.trainer is not None
assert result[0]["val_acc"] > 0.7
# test
result = trainer.test(model, datamodule=dm)
assert dm.trainer is not None
test_result = result[0]["test_acc"]
assert test_result > 0.6
# test saved model
model_path = os.path.join(tmpdir, "model.pt")
trainer.save_checkpoint(model_path)
model = ClassificationModel.load_from_checkpoint(model_path)
trainer = Trainer(default_root_dir=tmpdir, accelerator="hpu", devices=1)
result = trainer.test(model, datamodule=dm)
saved_result = result[0]["test_acc"]
assert saved_result == test_result
@RunIf(hpu=True)
def test_stages_correct(tmpdir):
"""Ensure all stages correctly are traced correctly by asserting the output for each stage."""
class StageModel(BoringModel):
def training_step(self, batch, batch_idx):
loss = super().training_step(batch, batch_idx)
loss = loss.get("loss")
# tracing requires a loss value that depends on the model.
# force it to be a value but ensure we use the loss.
loss = (loss - loss) + torch.tensor(1)
return {"loss": loss}
def validation_step(self, batch, batch_idx):
loss = super().validation_step(batch, batch_idx)
x = loss.get("x")
x = (x - x) + torch.tensor(2)
return {"x": x}
def test_step(self, batch, batch_idx):
loss = super().test_step(batch, batch_idx)
y = loss.get("y")
y = (y - y) + torch.tensor(3)
return {"y": y}
def predict_step(self, batch, batch_idx, dataloader_idx=None):
output = super().predict_step(batch, batch_idx)
return (output - output) + torch.tensor(4)
class TestCallback(Callback):
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx) -> None:
assert outputs["loss"].item() == 1
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx) -> None:
assert outputs["x"].item() == 2
def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx) -> None:
assert outputs["y"].item() == 3
def on_predict_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx) -> None:
assert torch.all(outputs == 4).item()
model = StageModel()
trainer = Trainer(
default_root_dir=tmpdir, fast_dev_run=True, accelerator="hpu", devices=1, callbacks=TestCallback()
)
trainer.fit(model)
trainer.test(model)
trainer.validate(model)
trainer.predict(model)
@RunIf(hpu=True)
def test_accelerator_hpu():
trainer = Trainer(accelerator="hpu", devices=1)
assert isinstance(trainer.accelerator, HPUAccelerator)
assert trainer.num_devices == 1
trainer = Trainer(accelerator="hpu")
assert isinstance(trainer.accelerator, HPUAccelerator)
assert trainer.num_devices == 8
trainer = Trainer(accelerator="auto", devices=8)
assert isinstance(trainer.accelerator, HPUAccelerator)
assert trainer.num_devices == 8
@RunIf(hpu=True)
def test_accelerator_hpu_with_single_device():
trainer = Trainer(accelerator="hpu", devices=1)
assert isinstance(trainer.strategy, SingleHPUStrategy)
assert isinstance(trainer.accelerator, HPUAccelerator)
@RunIf(hpu=True)
def test_accelerator_hpu_with_multiple_devices():
trainer = Trainer(accelerator="hpu", devices=8)
assert isinstance(trainer.strategy, HPUParallelStrategy)
assert isinstance(trainer.accelerator, HPUAccelerator)
@RunIf(hpu=True)
def test_accelerator_auto_with_devices_hpu():
trainer = Trainer(accelerator="auto", devices=8)
assert isinstance(trainer.strategy, HPUParallelStrategy)
@RunIf(hpu=True)
def test_strategy_choice_hpu_plugin():
trainer = Trainer(strategy=SingleHPUStrategy(device=torch.device("hpu")), accelerator="hpu", devices=1)
assert isinstance(trainer.strategy, SingleHPUStrategy)
trainer = Trainer(accelerator="hpu", devices=1)
assert isinstance(trainer.strategy, SingleHPUStrategy)
@RunIf(hpu=True)
def test_strategy_choice_hpu_parallel_plugin():
trainer = Trainer(
strategy=HPUParallelStrategy(parallel_devices=[torch.device("hpu")] * 8), accelerator="hpu", devices=8
)
assert isinstance(trainer.strategy, HPUParallelStrategy)
trainer = Trainer(accelerator="hpu", devices=8)
assert isinstance(trainer.strategy, HPUParallelStrategy)
@RunIf(hpu=True)
def test_devices_auto_choice_hpu():
trainer = Trainer(accelerator="auto", devices="auto")
assert trainer.num_devices == 8
@RunIf(hpu=True)
@pytest.mark.parametrize("hpus", [1])
def test_inference_only(tmpdir, hpus):
model = BoringModel()
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True, accelerator="hpu", devices=hpus)
trainer.validate(model)
trainer.test(model)
trainer.predict(model)
def test_hpu_auto_device_count():
assert HPUAccelerator.auto_device_count() == 8
@RunIf(hpu=True)
def test_hpu_unsupported_device_type():
with pytest.raises(MisconfigurationException, match="`devices` for `HPUAccelerator` must be int, string or None."):
Trainer(accelerator="hpu", devices=[1])