243 lines
7.7 KiB
Python
243 lines
7.7 KiB
Python
|
# Copyright The PyTorch Lightning team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import os
|
||
|
|
||
|
import pytest
|
||
|
import torch
|
||
|
|
||
|
from pytorch_lightning import Callback, seed_everything, Trainer
|
||
|
from pytorch_lightning.accelerators import HPUAccelerator
|
||
|
from pytorch_lightning.strategies.hpu_parallel import HPUParallelStrategy
|
||
|
from pytorch_lightning.strategies.single_hpu import SingleHPUStrategy
|
||
|
from pytorch_lightning.utilities import _HPU_AVAILABLE
|
||
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
||
|
from tests.helpers.boring_model import BoringModel
|
||
|
from tests.helpers.datamodules import ClassifDataModule
|
||
|
from tests.helpers.runif import RunIf
|
||
|
from tests.helpers.simple_models import ClassificationModel
|
||
|
|
||
|
|
||
|
@RunIf(hpu=True)
|
||
|
def test_availability():
|
||
|
assert HPUAccelerator.is_available()
|
||
|
|
||
|
|
||
|
@pytest.mark.skipif(_HPU_AVAILABLE, reason="test requires non-HPU machine")
|
||
|
def test_fail_if_no_hpus():
|
||
|
with pytest.raises(MisconfigurationException, match="HPUAccelerator can not run on your system"):
|
||
|
Trainer(accelerator="hpu", devices=1)
|
||
|
|
||
|
|
||
|
@RunIf(hpu=True)
|
||
|
def test_accelerator_selected():
|
||
|
trainer = Trainer(accelerator="hpu")
|
||
|
assert isinstance(trainer.accelerator, HPUAccelerator)
|
||
|
|
||
|
|
||
|
@RunIf(hpu=True)
|
||
|
def test_all_stages(tmpdir, hpus):
|
||
|
"""Tests all the model stages using BoringModel on HPU."""
|
||
|
model = BoringModel()
|
||
|
|
||
|
trainer = Trainer(
|
||
|
default_root_dir=tmpdir,
|
||
|
fast_dev_run=True,
|
||
|
accelerator="hpu",
|
||
|
devices=hpus,
|
||
|
precision=16,
|
||
|
)
|
||
|
trainer.fit(model)
|
||
|
trainer.validate(model)
|
||
|
trainer.test(model)
|
||
|
trainer.predict(model)
|
||
|
|
||
|
|
||
|
@RunIf(hpu=True)
|
||
|
def test_optimization(tmpdir):
|
||
|
seed_everything(42)
|
||
|
|
||
|
dm = ClassifDataModule(length=1024)
|
||
|
model = ClassificationModel()
|
||
|
|
||
|
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, accelerator="hpu", devices=1)
|
||
|
|
||
|
# fit model
|
||
|
trainer.fit(model, dm)
|
||
|
assert trainer.state.finished, f"Training failed with {trainer.state}"
|
||
|
assert dm.trainer is not None
|
||
|
|
||
|
# validate
|
||
|
result = trainer.validate(datamodule=dm)
|
||
|
assert dm.trainer is not None
|
||
|
assert result[0]["val_acc"] > 0.7
|
||
|
|
||
|
# test
|
||
|
result = trainer.test(model, datamodule=dm)
|
||
|
assert dm.trainer is not None
|
||
|
test_result = result[0]["test_acc"]
|
||
|
assert test_result > 0.6
|
||
|
|
||
|
# test saved model
|
||
|
model_path = os.path.join(tmpdir, "model.pt")
|
||
|
trainer.save_checkpoint(model_path)
|
||
|
|
||
|
model = ClassificationModel.load_from_checkpoint(model_path)
|
||
|
|
||
|
trainer = Trainer(default_root_dir=tmpdir, accelerator="hpu", devices=1)
|
||
|
|
||
|
result = trainer.test(model, datamodule=dm)
|
||
|
saved_result = result[0]["test_acc"]
|
||
|
assert saved_result == test_result
|
||
|
|
||
|
|
||
|
@RunIf(hpu=True)
|
||
|
def test_stages_correct(tmpdir):
|
||
|
"""Ensure all stages correctly are traced correctly by asserting the output for each stage."""
|
||
|
|
||
|
class StageModel(BoringModel):
|
||
|
def training_step(self, batch, batch_idx):
|
||
|
loss = super().training_step(batch, batch_idx)
|
||
|
loss = loss.get("loss")
|
||
|
# tracing requires a loss value that depends on the model.
|
||
|
# force it to be a value but ensure we use the loss.
|
||
|
loss = (loss - loss) + torch.tensor(1)
|
||
|
return {"loss": loss}
|
||
|
|
||
|
def validation_step(self, batch, batch_idx):
|
||
|
loss = super().validation_step(batch, batch_idx)
|
||
|
x = loss.get("x")
|
||
|
x = (x - x) + torch.tensor(2)
|
||
|
return {"x": x}
|
||
|
|
||
|
def test_step(self, batch, batch_idx):
|
||
|
loss = super().test_step(batch, batch_idx)
|
||
|
y = loss.get("y")
|
||
|
y = (y - y) + torch.tensor(3)
|
||
|
return {"y": y}
|
||
|
|
||
|
def predict_step(self, batch, batch_idx, dataloader_idx=None):
|
||
|
output = super().predict_step(batch, batch_idx)
|
||
|
return (output - output) + torch.tensor(4)
|
||
|
|
||
|
class TestCallback(Callback):
|
||
|
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx) -> None:
|
||
|
assert outputs["loss"].item() == 1
|
||
|
|
||
|
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx) -> None:
|
||
|
assert outputs["x"].item() == 2
|
||
|
|
||
|
def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx) -> None:
|
||
|
assert outputs["y"].item() == 3
|
||
|
|
||
|
def on_predict_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx) -> None:
|
||
|
assert torch.all(outputs == 4).item()
|
||
|
|
||
|
model = StageModel()
|
||
|
trainer = Trainer(
|
||
|
default_root_dir=tmpdir, fast_dev_run=True, accelerator="hpu", devices=1, callbacks=TestCallback()
|
||
|
)
|
||
|
trainer.fit(model)
|
||
|
trainer.test(model)
|
||
|
trainer.validate(model)
|
||
|
trainer.predict(model)
|
||
|
|
||
|
|
||
|
@RunIf(hpu=True)
|
||
|
def test_accelerator_hpu():
|
||
|
|
||
|
trainer = Trainer(accelerator="hpu", devices=1)
|
||
|
assert isinstance(trainer.accelerator, HPUAccelerator)
|
||
|
assert trainer.num_devices == 1
|
||
|
|
||
|
trainer = Trainer(accelerator="hpu")
|
||
|
assert isinstance(trainer.accelerator, HPUAccelerator)
|
||
|
assert trainer.num_devices == 8
|
||
|
|
||
|
trainer = Trainer(accelerator="auto", devices=8)
|
||
|
assert isinstance(trainer.accelerator, HPUAccelerator)
|
||
|
assert trainer.num_devices == 8
|
||
|
|
||
|
|
||
|
@RunIf(hpu=True)
|
||
|
def test_accelerator_hpu_with_single_device():
|
||
|
|
||
|
trainer = Trainer(accelerator="hpu", devices=1)
|
||
|
|
||
|
assert isinstance(trainer.strategy, SingleHPUStrategy)
|
||
|
assert isinstance(trainer.accelerator, HPUAccelerator)
|
||
|
|
||
|
|
||
|
@RunIf(hpu=True)
|
||
|
def test_accelerator_hpu_with_multiple_devices():
|
||
|
|
||
|
trainer = Trainer(accelerator="hpu", devices=8)
|
||
|
|
||
|
assert isinstance(trainer.strategy, HPUParallelStrategy)
|
||
|
assert isinstance(trainer.accelerator, HPUAccelerator)
|
||
|
|
||
|
|
||
|
@RunIf(hpu=True)
|
||
|
def test_accelerator_auto_with_devices_hpu():
|
||
|
|
||
|
trainer = Trainer(accelerator="auto", devices=8)
|
||
|
|
||
|
assert isinstance(trainer.strategy, HPUParallelStrategy)
|
||
|
|
||
|
|
||
|
@RunIf(hpu=True)
|
||
|
def test_strategy_choice_hpu_plugin():
|
||
|
trainer = Trainer(strategy=SingleHPUStrategy(device=torch.device("hpu")), accelerator="hpu", devices=1)
|
||
|
assert isinstance(trainer.strategy, SingleHPUStrategy)
|
||
|
|
||
|
trainer = Trainer(accelerator="hpu", devices=1)
|
||
|
assert isinstance(trainer.strategy, SingleHPUStrategy)
|
||
|
|
||
|
|
||
|
@RunIf(hpu=True)
|
||
|
def test_strategy_choice_hpu_parallel_plugin():
|
||
|
trainer = Trainer(
|
||
|
strategy=HPUParallelStrategy(parallel_devices=[torch.device("hpu")] * 8), accelerator="hpu", devices=8
|
||
|
)
|
||
|
assert isinstance(trainer.strategy, HPUParallelStrategy)
|
||
|
|
||
|
trainer = Trainer(accelerator="hpu", devices=8)
|
||
|
assert isinstance(trainer.strategy, HPUParallelStrategy)
|
||
|
|
||
|
|
||
|
@RunIf(hpu=True)
|
||
|
def test_devices_auto_choice_hpu():
|
||
|
trainer = Trainer(accelerator="auto", devices="auto")
|
||
|
assert trainer.num_devices == 8
|
||
|
|
||
|
|
||
|
@RunIf(hpu=True)
|
||
|
@pytest.mark.parametrize("hpus", [1])
|
||
|
def test_inference_only(tmpdir, hpus):
|
||
|
model = BoringModel()
|
||
|
|
||
|
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True, accelerator="hpu", devices=hpus)
|
||
|
trainer.validate(model)
|
||
|
trainer.test(model)
|
||
|
trainer.predict(model)
|
||
|
|
||
|
|
||
|
def test_hpu_auto_device_count():
|
||
|
assert HPUAccelerator.auto_device_count() == 8
|
||
|
|
||
|
|
||
|
@RunIf(hpu=True)
|
||
|
def test_hpu_unsupported_device_type():
|
||
|
with pytest.raises(MisconfigurationException, match="`devices` for `HPUAccelerator` must be int, string or None."):
|
||
|
Trainer(accelerator="hpu", devices=[1])
|