110 lines
3.4 KiB
Python
110 lines
3.4 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Any, Callable, Optional, Union
|
|
|
|
import torch
|
|
|
|
from pytorch_lightning.accelerators.legacy.accelerator import Accelerator, ReduceOp
|
|
from pytorch_lightning.cluster_environments import ClusterEnvironment
|
|
from pytorch_lightning.distributed.dist import LightningDistributed
|
|
from pytorch_lightning.utilities import AMPType
|
|
|
|
|
|
class GPUAccelerator(Accelerator):
|
|
amp_backend: AMPType
|
|
|
|
def __init__(self, trainer, cluster_environment: Optional[ClusterEnvironment] = None):
|
|
"""
|
|
Runs training using a single GPU
|
|
|
|
Example::
|
|
|
|
# default
|
|
trainer = Trainer(accelerator=GPUAccelerator())
|
|
|
|
"""
|
|
super().__init__(trainer, cluster_environment)
|
|
self.dist = LightningDistributed()
|
|
self.nickname = None
|
|
|
|
def setup(self, model):
|
|
|
|
# call setup
|
|
self.trainer.call_setup_hook(model)
|
|
|
|
torch.cuda.set_device(self.trainer.root_gpu)
|
|
model.cuda(self.trainer.root_gpu)
|
|
|
|
# CHOOSE OPTIMIZER
|
|
# allow for lr schedulers as well
|
|
self.setup_optimizers(model)
|
|
|
|
# 16-bit
|
|
model = self.trainer.precision_connector.connect(model)
|
|
|
|
self.trainer.model = model
|
|
|
|
def train(self):
|
|
model = self.trainer.model
|
|
|
|
# set up training routine
|
|
self.trainer.train_loop.setup_training(model)
|
|
|
|
# train or test
|
|
results = self.train_or_test()
|
|
return results
|
|
|
|
def _step(self, model_step: Callable, args):
|
|
args[0] = self.to_device(args[0])
|
|
|
|
if self.trainer.amp_backend == AMPType.NATIVE:
|
|
with torch.cuda.amp.autocast():
|
|
output = model_step(*args)
|
|
else:
|
|
output = model_step(*args)
|
|
|
|
return output
|
|
|
|
def training_step(self, args):
|
|
return self._step(self.trainer.model.training_step, args)
|
|
|
|
def validation_step(self, args):
|
|
return self._step(self.trainer.model.validation_step, args)
|
|
|
|
def test_step(self, args):
|
|
return self._step(self.trainer.model.test_step, args)
|
|
|
|
def predict(self, args):
|
|
return self._step(self.trainer.model.predict, args)
|
|
|
|
def to_device(self, batch):
|
|
gpu_id = 0
|
|
if isinstance(self.trainer.data_parallel_device_ids, list):
|
|
gpu_id = self.trainer.data_parallel_device_ids[0]
|
|
|
|
# Don't copy the batch since there is a single gpu that the batch could
|
|
# be referenced from and if there are multiple optimizers the batch will
|
|
# wind up copying it to the same device repeatedly.
|
|
return self.batch_to_device(batch, gpu_id)
|
|
|
|
def sync_tensor(self,
|
|
tensor: Union[torch.Tensor],
|
|
group: Optional[Any] = None,
|
|
reduce_op: Optional[Union[ReduceOp, str]] = None) -> torch.Tensor:
|
|
return tensor
|
|
|
|
@property
|
|
def require_distributed_sampler(self):
|
|
return False
|