# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Callable, Optional, Union import torch from pytorch_lightning.accelerators.legacy.accelerator import Accelerator, ReduceOp from pytorch_lightning.cluster_environments import ClusterEnvironment from pytorch_lightning.distributed.dist import LightningDistributed from pytorch_lightning.utilities import AMPType class GPUAccelerator(Accelerator): amp_backend: AMPType def __init__(self, trainer, cluster_environment: Optional[ClusterEnvironment] = None): """ Runs training using a single GPU Example:: # default trainer = Trainer(accelerator=GPUAccelerator()) """ super().__init__(trainer, cluster_environment) self.dist = LightningDistributed() self.nickname = None def setup(self, model): # call setup self.trainer.call_setup_hook(model) torch.cuda.set_device(self.trainer.root_gpu) model.cuda(self.trainer.root_gpu) # CHOOSE OPTIMIZER # allow for lr schedulers as well self.setup_optimizers(model) # 16-bit model = self.trainer.precision_connector.connect(model) self.trainer.model = model def train(self): model = self.trainer.model # set up training routine self.trainer.train_loop.setup_training(model) # train or test results = self.train_or_test() return results def _step(self, model_step: Callable, args): args[0] = self.to_device(args[0]) if self.trainer.amp_backend == AMPType.NATIVE: with torch.cuda.amp.autocast(): output = model_step(*args) else: output = model_step(*args) return output def training_step(self, args): return self._step(self.trainer.model.training_step, args) def validation_step(self, args): return self._step(self.trainer.model.validation_step, args) def test_step(self, args): return self._step(self.trainer.model.test_step, args) def predict(self, args): return self._step(self.trainer.model.predict, args) def to_device(self, batch): gpu_id = 0 if isinstance(self.trainer.data_parallel_device_ids, list): gpu_id = self.trainer.data_parallel_device_ids[0] # Don't copy the batch since there is a single gpu that the batch could # be referenced from and if there are multiple optimizers the batch will # wind up copying it to the same device repeatedly. return self.batch_to_device(batch, gpu_id) def sync_tensor(self, tensor: Union[torch.Tensor], group: Optional[Any] = None, reduce_op: Optional[Union[ReduceOp, str]] = None) -> torch.Tensor: return tensor @property def require_distributed_sampler(self): return False