66 lines
2.5 KiB
Python
66 lines
2.5 KiB
Python
# Copyright The Lightning AI team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Any
|
|
from unittest import mock
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from lightning.pytorch import Trainer
|
|
from lightning.pytorch.callbacks import RichModelSummary, RichProgressBar
|
|
from lightning.pytorch.demos.boring_classes import BoringModel
|
|
from lightning.pytorch.utilities.model_summary import summarize
|
|
from tests_pytorch.helpers.runif import RunIf
|
|
|
|
|
|
@RunIf(rich=True)
|
|
def test_rich_model_summary_callback():
|
|
trainer = Trainer(callbacks=RichProgressBar())
|
|
|
|
assert any(isinstance(cb, RichModelSummary) for cb in trainer.callbacks)
|
|
assert isinstance(trainer.progress_bar_callback, RichProgressBar)
|
|
|
|
|
|
def test_rich_progress_bar_import_error(monkeypatch):
|
|
import lightning.pytorch.callbacks.rich_model_summary as imports
|
|
|
|
monkeypatch.setattr(imports, "_RICH_AVAILABLE", False)
|
|
with pytest.raises(ModuleNotFoundError, match="`RichModelSummary` requires `rich` to be installed."):
|
|
RichModelSummary()
|
|
|
|
|
|
@RunIf(rich=True)
|
|
@mock.patch("rich.console.Console.print", autospec=True)
|
|
@mock.patch("rich.table.Table.add_row", autospec=True)
|
|
def test_rich_summary_tuples(mock_table_add_row, mock_console):
|
|
"""Ensure that tuples are converted into string, and print is called correctly."""
|
|
model_summary = RichModelSummary()
|
|
|
|
class TestModel(BoringModel):
|
|
@property
|
|
def example_input_array(self) -> Any:
|
|
return torch.randn(4, 32)
|
|
|
|
model = TestModel()
|
|
summary = summarize(model)
|
|
summary_data = summary._get_summary_data()
|
|
|
|
model_summary.summarize(summary_data=summary_data, total_parameters=1, trainable_parameters=1, model_size=1)
|
|
|
|
# ensure that summary was logged + the breakdown of model parameters
|
|
assert mock_console.call_count == 2
|
|
# assert that the input summary data was converted correctly
|
|
args, kwargs = mock_table_add_row.call_args_list[0]
|
|
assert args[1:] == ("0", "layer", "Linear", "66 ", "[4, 32]", "[4, 2]")
|