# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any from unittest import mock import pytest import torch from lightning.pytorch import Trainer from lightning.pytorch.callbacks import RichModelSummary, RichProgressBar from lightning.pytorch.demos.boring_classes import BoringModel from lightning.pytorch.utilities.model_summary import summarize from tests_pytorch.helpers.runif import RunIf @RunIf(rich=True) def test_rich_model_summary_callback(): trainer = Trainer(callbacks=RichProgressBar()) assert any(isinstance(cb, RichModelSummary) for cb in trainer.callbacks) assert isinstance(trainer.progress_bar_callback, RichProgressBar) def test_rich_progress_bar_import_error(monkeypatch): import lightning.pytorch.callbacks.rich_model_summary as imports monkeypatch.setattr(imports, "_RICH_AVAILABLE", False) with pytest.raises(ModuleNotFoundError, match="`RichModelSummary` requires `rich` to be installed."): RichModelSummary() @RunIf(rich=True) @mock.patch("rich.console.Console.print", autospec=True) @mock.patch("rich.table.Table.add_row", autospec=True) def test_rich_summary_tuples(mock_table_add_row, mock_console): """Ensure that tuples are converted into string, and print is called correctly.""" model_summary = RichModelSummary() class TestModel(BoringModel): @property def example_input_array(self) -> Any: return torch.randn(4, 32) model = TestModel() summary = summarize(model) summary_data = summary._get_summary_data() model_summary.summarize(summary_data=summary_data, total_parameters=1, trainable_parameters=1, model_size=1) # ensure that summary was logged + the breakdown of model parameters assert mock_console.call_count == 2 # assert that the input summary data was converted correctly args, kwargs = mock_table_add_row.call_args_list[0] assert args[1:] == ("0", "layer", "Linear", "66 ", "[4, 32]", "[4, 2]")