479 lines
18 KiB
Python
479 lines
18 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Progress Bars
|
|
=============
|
|
|
|
Use or override one of the progress bar callbacks.
|
|
|
|
"""
|
|
import importlib
|
|
import sys
|
|
|
|
# check if ipywidgets is installed before importing tqdm.auto
|
|
# to ensure it won't fail and a progress bar is displayed
|
|
from typing import Optional, Union
|
|
|
|
if importlib.util.find_spec('ipywidgets') is not None:
|
|
from tqdm.auto import tqdm as _tqdm
|
|
else:
|
|
from tqdm import tqdm as _tqdm
|
|
|
|
from pytorch_lightning.callbacks import Callback
|
|
|
|
_PAD_SIZE = 5
|
|
|
|
|
|
class tqdm(_tqdm):
|
|
"""
|
|
Custom tqdm progressbar where we append 0 to floating points/strings to
|
|
prevent the progress bar from flickering
|
|
"""
|
|
|
|
@staticmethod
|
|
def format_num(n) -> str:
|
|
""" Add additional padding to the formatted numbers """
|
|
should_be_padded = isinstance(n, (float, str))
|
|
if not isinstance(n, str):
|
|
n = _tqdm.format_num(n)
|
|
if should_be_padded and 'e' not in n:
|
|
if '.' not in n and len(n) < _PAD_SIZE:
|
|
try:
|
|
_ = float(n)
|
|
except ValueError:
|
|
return n
|
|
n += '.'
|
|
n += "0" * (_PAD_SIZE - len(n))
|
|
return n
|
|
|
|
|
|
class ProgressBarBase(Callback):
|
|
r"""
|
|
The base class for progress bars in Lightning. It is a :class:`~pytorch_lightning.callbacks.Callback`
|
|
that keeps track of the batch progress in the :class:`~pytorch_lightning.trainer.trainer.Trainer`.
|
|
You should implement your highly custom progress bars with this as the base class.
|
|
|
|
Example::
|
|
|
|
class LitProgressBar(ProgressBarBase):
|
|
|
|
def __init__(self):
|
|
super().__init__() # don't forget this :)
|
|
self.enable = True
|
|
|
|
def disable(self):
|
|
self.enable = False
|
|
|
|
def on_train_batch_end(self, trainer, pl_module, outputs):
|
|
super().on_train_batch_end(trainer, pl_module, outputs) # don't forget this :)
|
|
percent = (self.train_batch_idx / self.total_train_batches) * 100
|
|
sys.stdout.flush()
|
|
sys.stdout.write(f'{percent:.01f} percent complete \r')
|
|
|
|
bar = LitProgressBar()
|
|
trainer = Trainer(callbacks=[bar])
|
|
|
|
"""
|
|
|
|
def __init__(self):
|
|
|
|
self._trainer = None
|
|
self._train_batch_idx = 0
|
|
self._val_batch_idx = 0
|
|
self._test_batch_idx = 0
|
|
self._predict_batch_idx = 0
|
|
|
|
@property
|
|
def trainer(self):
|
|
return self._trainer
|
|
|
|
@property
|
|
def train_batch_idx(self) -> int:
|
|
"""
|
|
The current batch index being processed during training.
|
|
Use this to update your progress bar.
|
|
"""
|
|
return self._train_batch_idx
|
|
|
|
@property
|
|
def val_batch_idx(self) -> int:
|
|
"""
|
|
The current batch index being processed during validation.
|
|
Use this to update your progress bar.
|
|
"""
|
|
return self._val_batch_idx
|
|
|
|
@property
|
|
def test_batch_idx(self) -> int:
|
|
"""
|
|
The current batch index being processed during testing.
|
|
Use this to update your progress bar.
|
|
"""
|
|
return self._test_batch_idx
|
|
|
|
@property
|
|
def predict_batch_idx(self) -> int:
|
|
"""
|
|
The current batch index being processed during predicting.
|
|
Use this to update your progress bar.
|
|
"""
|
|
return self._predict_batch_idx
|
|
|
|
@property
|
|
def total_train_batches(self) -> int:
|
|
"""
|
|
The total number of training batches during training, which may change from epoch to epoch.
|
|
Use this to set the total number of iterations in the progress bar. Can return ``inf`` if the
|
|
training dataloader is of infinite size.
|
|
"""
|
|
return self.trainer.num_training_batches
|
|
|
|
@property
|
|
def total_val_batches(self) -> int:
|
|
"""
|
|
The total number of validation batches during validation, which may change from epoch to epoch.
|
|
Use this to set the total number of iterations in the progress bar. Can return ``inf`` if the
|
|
validation dataloader is of infinite size.
|
|
"""
|
|
total_val_batches = 0
|
|
if not self.trainer.disable_validation:
|
|
is_val_epoch = (self.trainer.current_epoch) % self.trainer.check_val_every_n_epoch == 0
|
|
total_val_batches = sum(self.trainer.num_val_batches) if is_val_epoch else 0
|
|
return total_val_batches
|
|
|
|
@property
|
|
def total_test_batches(self) -> int:
|
|
"""
|
|
The total number of testing batches during testing, which may change from epoch to epoch.
|
|
Use this to set the total number of iterations in the progress bar. Can return ``inf`` if the
|
|
test dataloader is of infinite size.
|
|
"""
|
|
return sum(self.trainer.num_test_batches)
|
|
|
|
@property
|
|
def total_predict_batches(self) -> int:
|
|
"""
|
|
The total number of predicting batches during testing, which may change from epoch to epoch.
|
|
Use this to set the total number of iterations in the progress bar. Can return ``inf`` if the
|
|
predict dataloader is of infinite size.
|
|
"""
|
|
return sum(self.trainer.num_predict_batches)
|
|
|
|
def disable(self):
|
|
"""
|
|
You should provide a way to disable the progress bar.
|
|
The :class:`~pytorch_lightning.trainer.trainer.Trainer` will call this to disable the
|
|
output on processes that have a rank different from 0, e.g., in multi-node training.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def enable(self):
|
|
"""
|
|
You should provide a way to enable the progress bar.
|
|
The :class:`~pytorch_lightning.trainer.trainer.Trainer` will call this in e.g. pre-training
|
|
routines like the :ref:`learning rate finder <advanced/lr_finder:Learning Rate Finder>`
|
|
to temporarily enable and disable the main progress bar.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def on_init_end(self, trainer):
|
|
self._trainer = trainer
|
|
|
|
def on_train_start(self, trainer, pl_module):
|
|
self._train_batch_idx = trainer.batch_idx
|
|
|
|
def on_epoch_start(self, trainer, pl_module):
|
|
self._train_batch_idx = 0
|
|
|
|
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
|
self._train_batch_idx += 1
|
|
|
|
def on_validation_start(self, trainer, pl_module):
|
|
self._val_batch_idx = 0
|
|
|
|
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
|
self._val_batch_idx += 1
|
|
|
|
def on_test_start(self, trainer, pl_module):
|
|
self._test_batch_idx = 0
|
|
|
|
def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
|
self._test_batch_idx += 1
|
|
|
|
def on_predict_start(self, trainer, pl_module):
|
|
self._predict_batch_idx = 0
|
|
|
|
def on_predict_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
|
self._predict_batch_idx += 1
|
|
|
|
|
|
class ProgressBar(ProgressBarBase):
|
|
r"""
|
|
This is the default progress bar used by Lightning. It prints to `stdout` using the
|
|
:mod:`tqdm` package and shows up to four different bars:
|
|
|
|
- **sanity check progress:** the progress during the sanity check run
|
|
- **main progress:** shows training + validation progress combined. It also accounts for
|
|
multiple validation runs during training when
|
|
:paramref:`~pytorch_lightning.trainer.trainer.Trainer.val_check_interval` is used.
|
|
- **validation progress:** only visible during validation;
|
|
shows total progress over all validation datasets.
|
|
- **test progress:** only active when testing; shows total progress over all test datasets.
|
|
|
|
For infinite datasets, the progress bar never ends.
|
|
|
|
If you want to customize the default ``tqdm`` progress bars used by Lightning, you can override
|
|
specific methods of the callback class and pass your custom implementation to the
|
|
:class:`~pytorch_lightning.trainer.trainer.Trainer`:
|
|
|
|
Example::
|
|
|
|
class LitProgressBar(ProgressBar):
|
|
|
|
def init_validation_tqdm(self):
|
|
bar = super().init_validation_tqdm()
|
|
bar.set_description('running validation ...')
|
|
return bar
|
|
|
|
bar = LitProgressBar()
|
|
trainer = Trainer(callbacks=[bar])
|
|
|
|
Args:
|
|
refresh_rate:
|
|
Determines at which rate (in number of batches) the progress bars get updated.
|
|
Set it to ``0`` to disable the display. By default, the
|
|
:class:`~pytorch_lightning.trainer.trainer.Trainer` uses this implementation of the progress
|
|
bar and sets the refresh rate to the value provided to the
|
|
:paramref:`~pytorch_lightning.trainer.trainer.Trainer.progress_bar_refresh_rate` argument in the
|
|
:class:`~pytorch_lightning.trainer.trainer.Trainer`.
|
|
process_position:
|
|
Set this to a value greater than ``0`` to offset the progress bars by this many lines.
|
|
This is useful when you have progress bars defined elsewhere and want to show all of them
|
|
together. This corresponds to
|
|
:paramref:`~pytorch_lightning.trainer.trainer.Trainer.process_position` in the
|
|
:class:`~pytorch_lightning.trainer.trainer.Trainer`.
|
|
|
|
"""
|
|
|
|
def __init__(self, refresh_rate: int = 1, process_position: int = 0):
|
|
super().__init__()
|
|
self._refresh_rate = refresh_rate
|
|
self._process_position = process_position
|
|
self._enabled = True
|
|
self.main_progress_bar = None
|
|
self.val_progress_bar = None
|
|
self.test_progress_bar = None
|
|
|
|
def __getstate__(self):
|
|
# can't pickle the tqdm objects
|
|
state = self.__dict__.copy()
|
|
state['main_progress_bar'] = None
|
|
state['val_progress_bar'] = None
|
|
state['test_progress_bar'] = None
|
|
return state
|
|
|
|
@property
|
|
def refresh_rate(self) -> int:
|
|
return self._refresh_rate
|
|
|
|
@property
|
|
def process_position(self) -> int:
|
|
return self._process_position
|
|
|
|
@property
|
|
def is_enabled(self) -> bool:
|
|
return self._enabled and self.refresh_rate > 0
|
|
|
|
@property
|
|
def is_disabled(self) -> bool:
|
|
return not self.is_enabled
|
|
|
|
def disable(self) -> None:
|
|
self._enabled = False
|
|
|
|
def enable(self) -> None:
|
|
self._enabled = True
|
|
|
|
def init_sanity_tqdm(self) -> tqdm:
|
|
""" Override this to customize the tqdm bar for the validation sanity run. """
|
|
bar = tqdm(
|
|
desc='Validation sanity check',
|
|
position=(2 * self.process_position),
|
|
disable=self.is_disabled,
|
|
leave=False,
|
|
dynamic_ncols=True,
|
|
file=sys.stdout,
|
|
)
|
|
return bar
|
|
|
|
def init_train_tqdm(self) -> tqdm:
|
|
""" Override this to customize the tqdm bar for training. """
|
|
bar = tqdm(
|
|
desc='Training',
|
|
initial=self.train_batch_idx,
|
|
position=(2 * self.process_position),
|
|
disable=self.is_disabled,
|
|
leave=True,
|
|
dynamic_ncols=True,
|
|
file=sys.stdout,
|
|
smoothing=0,
|
|
)
|
|
return bar
|
|
|
|
def init_predict_tqdm(self) -> tqdm:
|
|
""" Override this to customize the tqdm bar for predicting. """
|
|
bar = tqdm(
|
|
desc='Predicting',
|
|
initial=self.train_batch_idx,
|
|
position=(2 * self.process_position),
|
|
disable=self.is_disabled,
|
|
leave=True,
|
|
dynamic_ncols=True,
|
|
file=sys.stdout,
|
|
smoothing=0,
|
|
)
|
|
return bar
|
|
|
|
def init_validation_tqdm(self) -> tqdm:
|
|
""" Override this to customize the tqdm bar for validation. """
|
|
bar = tqdm(
|
|
desc='Validating',
|
|
position=(2 * self.process_position + 1),
|
|
disable=self.is_disabled,
|
|
leave=False,
|
|
dynamic_ncols=True,
|
|
file=sys.stdout
|
|
)
|
|
return bar
|
|
|
|
def init_test_tqdm(self) -> tqdm:
|
|
""" Override this to customize the tqdm bar for testing. """
|
|
bar = tqdm(
|
|
desc="Testing",
|
|
position=(2 * self.process_position),
|
|
disable=self.is_disabled,
|
|
leave=True,
|
|
dynamic_ncols=True,
|
|
file=sys.stdout
|
|
)
|
|
return bar
|
|
|
|
def on_sanity_check_start(self, trainer, pl_module):
|
|
super().on_sanity_check_start(trainer, pl_module)
|
|
self.val_progress_bar = self.init_sanity_tqdm()
|
|
reset(self.val_progress_bar, sum(trainer.num_sanity_val_batches))
|
|
self.main_progress_bar = tqdm(disable=True) # dummy progress bar
|
|
|
|
def on_sanity_check_end(self, trainer, pl_module):
|
|
super().on_sanity_check_end(trainer, pl_module)
|
|
self.main_progress_bar.close()
|
|
self.val_progress_bar.close()
|
|
|
|
def on_train_start(self, trainer, pl_module):
|
|
super().on_train_start(trainer, pl_module)
|
|
self.main_progress_bar = self.init_train_tqdm()
|
|
|
|
def on_epoch_start(self, trainer, pl_module):
|
|
super().on_epoch_start(trainer, pl_module)
|
|
total_train_batches = self.total_train_batches
|
|
total_val_batches = self.total_val_batches
|
|
if total_train_batches != float('inf'):
|
|
# val can be checked multiple times per epoch
|
|
val_checks_per_epoch = total_train_batches // trainer.val_check_batch
|
|
total_val_batches = total_val_batches * val_checks_per_epoch
|
|
total_batches = total_train_batches + total_val_batches
|
|
reset(self.main_progress_bar, total_batches)
|
|
self.main_progress_bar.set_description(f'Epoch {trainer.current_epoch}')
|
|
|
|
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
|
super().on_train_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx)
|
|
if self._should_update(self.train_batch_idx, self.total_train_batches + self.total_val_batches):
|
|
self._update_bar(self.main_progress_bar)
|
|
self.main_progress_bar.set_postfix(trainer.progress_bar_dict)
|
|
|
|
def on_validation_start(self, trainer, pl_module):
|
|
super().on_validation_start(trainer, pl_module)
|
|
if not trainer.running_sanity_check:
|
|
self._update_bar(self.main_progress_bar) # fill up remaining
|
|
self.val_progress_bar = self.init_validation_tqdm()
|
|
reset(self.val_progress_bar, self.total_val_batches)
|
|
|
|
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
|
super().on_validation_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx)
|
|
if self._should_update(self.val_batch_idx, self.total_val_batches):
|
|
self._update_bar(self.val_progress_bar)
|
|
self._update_bar(self.main_progress_bar)
|
|
|
|
def on_validation_end(self, trainer, pl_module):
|
|
super().on_validation_end(trainer, pl_module)
|
|
self.main_progress_bar.set_postfix(trainer.progress_bar_dict)
|
|
self.val_progress_bar.close()
|
|
|
|
def on_train_end(self, trainer, pl_module):
|
|
super().on_train_end(trainer, pl_module)
|
|
self.main_progress_bar.close()
|
|
|
|
def on_test_start(self, trainer, pl_module):
|
|
super().on_test_start(trainer, pl_module)
|
|
self.test_progress_bar = self.init_test_tqdm()
|
|
self.test_progress_bar.total = convert_inf(self.total_test_batches)
|
|
|
|
def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
|
super().on_test_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx)
|
|
if self._should_update(self.test_batch_idx, self.total_test_batches):
|
|
self._update_bar(self.test_progress_bar)
|
|
|
|
def on_test_end(self, trainer, pl_module):
|
|
super().on_test_end(trainer, pl_module)
|
|
self.test_progress_bar.close()
|
|
|
|
def on_predict_start(self, trainer, pl_module):
|
|
super().on_predict_start(trainer, pl_module)
|
|
self.predict_progress_bar = self.init_predict_tqdm()
|
|
self.predict_progress_bar.total = convert_inf(self.total_predict_batches)
|
|
|
|
def on_predict_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
|
super().on_predict_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx)
|
|
if self._should_update(self.predict_batch_idx, self.total_predict_batches):
|
|
self._update_bar(self.predict_progress_bar)
|
|
|
|
def on_predict_end(self, trainer, pl_module):
|
|
self.predict_progress_bar.close()
|
|
|
|
def _should_update(self, current, total):
|
|
return self.is_enabled and (current % self.refresh_rate == 0 or current == total)
|
|
|
|
def _update_bar(self, bar):
|
|
""" Updates the bar by the refresh rate without overshooting. """
|
|
if bar.total is not None:
|
|
delta = min(self.refresh_rate, bar.total - bar.n)
|
|
else:
|
|
# infinite / unknown size
|
|
delta = self.refresh_rate
|
|
if delta > 0:
|
|
bar.update(delta)
|
|
|
|
|
|
def convert_inf(x: Optional[Union[int, float]]) -> Optional[Union[int, float]]:
|
|
""" The tqdm doesn't support inf values. We have to convert it to None. """
|
|
if x == float('inf'):
|
|
return None
|
|
return x
|
|
|
|
|
|
def reset(bar: tqdm, total: Optional[int] = None) -> None:
|
|
""" Resets the tqdm bar to 0 progress with a new total, unless it is disabled. """
|
|
if not bar.disable:
|
|
bar.reset(total=convert_inf(total))
|