# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Progress Bars ============= Use or override one of the progress bar callbacks. """ import importlib import sys # check if ipywidgets is installed before importing tqdm.auto # to ensure it won't fail and a progress bar is displayed from typing import Optional, Union if importlib.util.find_spec('ipywidgets') is not None: from tqdm.auto import tqdm as _tqdm else: from tqdm import tqdm as _tqdm from pytorch_lightning.callbacks import Callback _PAD_SIZE = 5 class tqdm(_tqdm): """ Custom tqdm progressbar where we append 0 to floating points/strings to prevent the progress bar from flickering """ @staticmethod def format_num(n) -> str: """ Add additional padding to the formatted numbers """ should_be_padded = isinstance(n, (float, str)) if not isinstance(n, str): n = _tqdm.format_num(n) if should_be_padded and 'e' not in n: if '.' not in n and len(n) < _PAD_SIZE: try: _ = float(n) except ValueError: return n n += '.' n += "0" * (_PAD_SIZE - len(n)) return n class ProgressBarBase(Callback): r""" The base class for progress bars in Lightning. It is a :class:`~pytorch_lightning.callbacks.Callback` that keeps track of the batch progress in the :class:`~pytorch_lightning.trainer.trainer.Trainer`. You should implement your highly custom progress bars with this as the base class. Example:: class LitProgressBar(ProgressBarBase): def __init__(self): super().__init__() # don't forget this :) self.enable = True def disable(self): self.enable = False def on_train_batch_end(self, trainer, pl_module, outputs): super().on_train_batch_end(trainer, pl_module, outputs) # don't forget this :) percent = (self.train_batch_idx / self.total_train_batches) * 100 sys.stdout.flush() sys.stdout.write(f'{percent:.01f} percent complete \r') bar = LitProgressBar() trainer = Trainer(callbacks=[bar]) """ def __init__(self): self._trainer = None self._train_batch_idx = 0 self._val_batch_idx = 0 self._test_batch_idx = 0 self._predict_batch_idx = 0 @property def trainer(self): return self._trainer @property def train_batch_idx(self) -> int: """ The current batch index being processed during training. Use this to update your progress bar. """ return self._train_batch_idx @property def val_batch_idx(self) -> int: """ The current batch index being processed during validation. Use this to update your progress bar. """ return self._val_batch_idx @property def test_batch_idx(self) -> int: """ The current batch index being processed during testing. Use this to update your progress bar. """ return self._test_batch_idx @property def predict_batch_idx(self) -> int: """ The current batch index being processed during predicting. Use this to update your progress bar. """ return self._predict_batch_idx @property def total_train_batches(self) -> int: """ The total number of training batches during training, which may change from epoch to epoch. Use this to set the total number of iterations in the progress bar. Can return ``inf`` if the training dataloader is of infinite size. """ return self.trainer.num_training_batches @property def total_val_batches(self) -> int: """ The total number of validation batches during validation, which may change from epoch to epoch. Use this to set the total number of iterations in the progress bar. Can return ``inf`` if the validation dataloader is of infinite size. """ total_val_batches = 0 if not self.trainer.disable_validation: is_val_epoch = (self.trainer.current_epoch) % self.trainer.check_val_every_n_epoch == 0 total_val_batches = sum(self.trainer.num_val_batches) if is_val_epoch else 0 return total_val_batches @property def total_test_batches(self) -> int: """ The total number of testing batches during testing, which may change from epoch to epoch. Use this to set the total number of iterations in the progress bar. Can return ``inf`` if the test dataloader is of infinite size. """ return sum(self.trainer.num_test_batches) @property def total_predict_batches(self) -> int: """ The total number of predicting batches during testing, which may change from epoch to epoch. Use this to set the total number of iterations in the progress bar. Can return ``inf`` if the predict dataloader is of infinite size. """ return sum(self.trainer.num_predict_batches) def disable(self): """ You should provide a way to disable the progress bar. The :class:`~pytorch_lightning.trainer.trainer.Trainer` will call this to disable the output on processes that have a rank different from 0, e.g., in multi-node training. """ raise NotImplementedError def enable(self): """ You should provide a way to enable the progress bar. The :class:`~pytorch_lightning.trainer.trainer.Trainer` will call this in e.g. pre-training routines like the :ref:`learning rate finder ` to temporarily enable and disable the main progress bar. """ raise NotImplementedError def on_init_end(self, trainer): self._trainer = trainer def on_train_start(self, trainer, pl_module): self._train_batch_idx = trainer.batch_idx def on_epoch_start(self, trainer, pl_module): self._train_batch_idx = 0 def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): self._train_batch_idx += 1 def on_validation_start(self, trainer, pl_module): self._val_batch_idx = 0 def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): self._val_batch_idx += 1 def on_test_start(self, trainer, pl_module): self._test_batch_idx = 0 def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): self._test_batch_idx += 1 def on_predict_start(self, trainer, pl_module): self._predict_batch_idx = 0 def on_predict_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): self._predict_batch_idx += 1 class ProgressBar(ProgressBarBase): r""" This is the default progress bar used by Lightning. It prints to `stdout` using the :mod:`tqdm` package and shows up to four different bars: - **sanity check progress:** the progress during the sanity check run - **main progress:** shows training + validation progress combined. It also accounts for multiple validation runs during training when :paramref:`~pytorch_lightning.trainer.trainer.Trainer.val_check_interval` is used. - **validation progress:** only visible during validation; shows total progress over all validation datasets. - **test progress:** only active when testing; shows total progress over all test datasets. For infinite datasets, the progress bar never ends. If you want to customize the default ``tqdm`` progress bars used by Lightning, you can override specific methods of the callback class and pass your custom implementation to the :class:`~pytorch_lightning.trainer.trainer.Trainer`: Example:: class LitProgressBar(ProgressBar): def init_validation_tqdm(self): bar = super().init_validation_tqdm() bar.set_description('running validation ...') return bar bar = LitProgressBar() trainer = Trainer(callbacks=[bar]) Args: refresh_rate: Determines at which rate (in number of batches) the progress bars get updated. Set it to ``0`` to disable the display. By default, the :class:`~pytorch_lightning.trainer.trainer.Trainer` uses this implementation of the progress bar and sets the refresh rate to the value provided to the :paramref:`~pytorch_lightning.trainer.trainer.Trainer.progress_bar_refresh_rate` argument in the :class:`~pytorch_lightning.trainer.trainer.Trainer`. process_position: Set this to a value greater than ``0`` to offset the progress bars by this many lines. This is useful when you have progress bars defined elsewhere and want to show all of them together. This corresponds to :paramref:`~pytorch_lightning.trainer.trainer.Trainer.process_position` in the :class:`~pytorch_lightning.trainer.trainer.Trainer`. """ def __init__(self, refresh_rate: int = 1, process_position: int = 0): super().__init__() self._refresh_rate = refresh_rate self._process_position = process_position self._enabled = True self.main_progress_bar = None self.val_progress_bar = None self.test_progress_bar = None def __getstate__(self): # can't pickle the tqdm objects state = self.__dict__.copy() state['main_progress_bar'] = None state['val_progress_bar'] = None state['test_progress_bar'] = None return state @property def refresh_rate(self) -> int: return self._refresh_rate @property def process_position(self) -> int: return self._process_position @property def is_enabled(self) -> bool: return self._enabled and self.refresh_rate > 0 @property def is_disabled(self) -> bool: return not self.is_enabled def disable(self) -> None: self._enabled = False def enable(self) -> None: self._enabled = True def init_sanity_tqdm(self) -> tqdm: """ Override this to customize the tqdm bar for the validation sanity run. """ bar = tqdm( desc='Validation sanity check', position=(2 * self.process_position), disable=self.is_disabled, leave=False, dynamic_ncols=True, file=sys.stdout, ) return bar def init_train_tqdm(self) -> tqdm: """ Override this to customize the tqdm bar for training. """ bar = tqdm( desc='Training', initial=self.train_batch_idx, position=(2 * self.process_position), disable=self.is_disabled, leave=True, dynamic_ncols=True, file=sys.stdout, smoothing=0, ) return bar def init_predict_tqdm(self) -> tqdm: """ Override this to customize the tqdm bar for predicting. """ bar = tqdm( desc='Predicting', initial=self.train_batch_idx, position=(2 * self.process_position), disable=self.is_disabled, leave=True, dynamic_ncols=True, file=sys.stdout, smoothing=0, ) return bar def init_validation_tqdm(self) -> tqdm: """ Override this to customize the tqdm bar for validation. """ bar = tqdm( desc='Validating', position=(2 * self.process_position + 1), disable=self.is_disabled, leave=False, dynamic_ncols=True, file=sys.stdout ) return bar def init_test_tqdm(self) -> tqdm: """ Override this to customize the tqdm bar for testing. """ bar = tqdm( desc="Testing", position=(2 * self.process_position), disable=self.is_disabled, leave=True, dynamic_ncols=True, file=sys.stdout ) return bar def on_sanity_check_start(self, trainer, pl_module): super().on_sanity_check_start(trainer, pl_module) self.val_progress_bar = self.init_sanity_tqdm() reset(self.val_progress_bar, sum(trainer.num_sanity_val_batches)) self.main_progress_bar = tqdm(disable=True) # dummy progress bar def on_sanity_check_end(self, trainer, pl_module): super().on_sanity_check_end(trainer, pl_module) self.main_progress_bar.close() self.val_progress_bar.close() def on_train_start(self, trainer, pl_module): super().on_train_start(trainer, pl_module) self.main_progress_bar = self.init_train_tqdm() def on_epoch_start(self, trainer, pl_module): super().on_epoch_start(trainer, pl_module) total_train_batches = self.total_train_batches total_val_batches = self.total_val_batches if total_train_batches != float('inf'): # val can be checked multiple times per epoch val_checks_per_epoch = total_train_batches // trainer.val_check_batch total_val_batches = total_val_batches * val_checks_per_epoch total_batches = total_train_batches + total_val_batches reset(self.main_progress_bar, total_batches) self.main_progress_bar.set_description(f'Epoch {trainer.current_epoch}') def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): super().on_train_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx) if self._should_update(self.train_batch_idx, self.total_train_batches + self.total_val_batches): self._update_bar(self.main_progress_bar) self.main_progress_bar.set_postfix(trainer.progress_bar_dict) def on_validation_start(self, trainer, pl_module): super().on_validation_start(trainer, pl_module) if not trainer.running_sanity_check: self._update_bar(self.main_progress_bar) # fill up remaining self.val_progress_bar = self.init_validation_tqdm() reset(self.val_progress_bar, self.total_val_batches) def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): super().on_validation_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx) if self._should_update(self.val_batch_idx, self.total_val_batches): self._update_bar(self.val_progress_bar) self._update_bar(self.main_progress_bar) def on_validation_end(self, trainer, pl_module): super().on_validation_end(trainer, pl_module) self.main_progress_bar.set_postfix(trainer.progress_bar_dict) self.val_progress_bar.close() def on_train_end(self, trainer, pl_module): super().on_train_end(trainer, pl_module) self.main_progress_bar.close() def on_test_start(self, trainer, pl_module): super().on_test_start(trainer, pl_module) self.test_progress_bar = self.init_test_tqdm() self.test_progress_bar.total = convert_inf(self.total_test_batches) def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): super().on_test_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx) if self._should_update(self.test_batch_idx, self.total_test_batches): self._update_bar(self.test_progress_bar) def on_test_end(self, trainer, pl_module): super().on_test_end(trainer, pl_module) self.test_progress_bar.close() def on_predict_start(self, trainer, pl_module): super().on_predict_start(trainer, pl_module) self.predict_progress_bar = self.init_predict_tqdm() self.predict_progress_bar.total = convert_inf(self.total_predict_batches) def on_predict_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): super().on_predict_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx) if self._should_update(self.predict_batch_idx, self.total_predict_batches): self._update_bar(self.predict_progress_bar) def on_predict_end(self, trainer, pl_module): self.predict_progress_bar.close() def _should_update(self, current, total): return self.is_enabled and (current % self.refresh_rate == 0 or current == total) def _update_bar(self, bar): """ Updates the bar by the refresh rate without overshooting. """ if bar.total is not None: delta = min(self.refresh_rate, bar.total - bar.n) else: # infinite / unknown size delta = self.refresh_rate if delta > 0: bar.update(delta) def convert_inf(x: Optional[Union[int, float]]) -> Optional[Union[int, float]]: """ The tqdm doesn't support inf values. We have to convert it to None. """ if x == float('inf'): return None return x def reset(bar: tqdm, total: Optional[int] = None) -> None: """ Resets the tqdm bar to 0 progress with a new total, unless it is disabled. """ if not bar.disable: bar.reset(total=convert_inf(total))