lightning/pytorch_lightning/callbacks/early_stopping.py

196 lines
6.8 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""
Early Stopping
^^^^^^^^^^^^^^
Monitor a metric and stop training when it stops improving.
"""
import numpy as np
import torch
from pytorch_lightning.callbacks.base import Callback
from pytorch_lightning.utilities import rank_zero_info, rank_zero_warn
from pytorch_lightning.utilities.exceptions import MisconfigurationException
class EarlyStopping(Callback):
r"""
Monitor a metric and stop training when it stops improving.
Args:
monitor: quantity to be monitored. Default: ``'early_stop_on'``.
min_delta: minimum change in the monitored quantity
to qualify as an improvement, i.e. an absolute
change of less than `min_delta`, will count as no
improvement. Default: ``0.0``.
patience: number of validation epochs with no improvement
after which training will be stopped. Default: ``3``.
verbose: verbosity mode. Default: ``False``.
mode: one of {auto, min, max}. In `min` mode,
training will stop when the quantity
monitored has stopped decreasing; in `max`
mode it will stop when the quantity
monitored has stopped increasing; in `auto`
mode, the direction is automatically inferred
from the name of the monitored quantity.
.. warning::
Setting ``mode='auto'`` has been deprecated in v1.1 and will be removed in v1.3.
strict: whether to crash the training if `monitor` is
not found in the validation metrics. Default: ``True``.
Raises:
MisconfigurationException:
If ``mode`` is none of ``"min"``, ``"max"``, and ``"auto"``.
RuntimeError:
If the metric ``monitor`` is not available.
Example::
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import EarlyStopping
>>> early_stopping = EarlyStopping('val_loss')
>>> trainer = Trainer(callbacks=[early_stopping])
"""
mode_dict = {
'min': torch.lt,
'max': torch.gt,
}
def __init__(
self,
monitor: str = 'early_stop_on',
min_delta: float = 0.0,
patience: int = 3,
verbose: bool = False,
mode: str = 'auto',
strict: bool = True,
):
super().__init__()
self.monitor = monitor
self.patience = patience
self.verbose = verbose
self.strict = strict
self.min_delta = min_delta
self.wait_count = 0
self.stopped_epoch = 0
self.mode = mode
self.warned_result_obj = False
self.__init_monitor_mode()
self.min_delta *= 1 if self.monitor_op == torch.gt else -1
torch_inf = torch.tensor(np.Inf)
self.best_score = torch_inf if self.monitor_op == torch.lt else -torch_inf
def __init_monitor_mode(self):
if self.mode not in self.mode_dict and self.mode != 'auto':
raise MisconfigurationException(f"`mode` can be auto, {', '.join(self.mode_dict.keys())}, got {self.mode}")
# TODO: Update with MisconfigurationException when auto mode is removed in v1.3
if self.mode == 'auto':
rank_zero_warn(
"mode='auto' is deprecated in v1.1 and will be removed in v1.3."
" Default value for mode with be 'min' in v1.3.", DeprecationWarning
)
if "acc" in self.monitor or self.monitor.startswith("fmeasure"):
self.mode = 'max'
else:
self.mode = 'min'
if self.verbose > 0:
rank_zero_info(f'EarlyStopping mode set to {self.mode} for monitoring {self.monitor}.')
def _validate_condition_metric(self, logs):
monitor_val = logs.get(self.monitor)
error_msg = (
f'Early stopping conditioned on metric `{self.monitor}` which is not available.'
' Pass in or modify your `EarlyStopping` callback to use any of the following:'
f' `{"`, `".join(list(logs.keys()))}`'
)
if monitor_val is None:
if self.strict:
raise RuntimeError(error_msg)
if self.verbose > 0:
rank_zero_warn(error_msg, RuntimeWarning)
return False
return True
@property
def monitor_op(self):
return self.mode_dict[self.mode]
def on_save_checkpoint(self, trainer, pl_module):
return {
'wait_count': self.wait_count,
'stopped_epoch': self.stopped_epoch,
'best_score': self.best_score,
'patience': self.patience
}
def on_load_checkpoint(self, checkpointed_state):
self.wait_count = checkpointed_state['wait_count']
self.stopped_epoch = checkpointed_state['stopped_epoch']
self.best_score = checkpointed_state['best_score']
self.patience = checkpointed_state['patience']
def on_validation_end(self, trainer, pl_module):
if trainer.running_sanity_check:
return
self._run_early_stopping_check(trainer, pl_module)
def _run_early_stopping_check(self, trainer, pl_module):
"""
Checks whether the early stopping condition is met
and if so tells the trainer to stop the training.
"""
logs = trainer.callback_metrics
if (
trainer.fast_dev_run # disable early_stopping with fast_dev_run
or not self._validate_condition_metric(logs) # short circuit if metric not present
):
return # short circuit if metric not present
current = logs.get(self.monitor)
# when in dev debugging
trainer.dev_debugger.track_early_stopping_history(self, current)
if self.monitor_op(current - self.min_delta, self.best_score):
self.best_score = current
self.wait_count = 0
should_stop = False
else:
self.wait_count += 1
should_stop = self.wait_count >= self.patience
if bool(should_stop):
self.stopped_epoch = trainer.current_epoch
trainer.should_stop = True
# stop every ddp process if any world process decides to stop
should_stop = trainer.training_type_plugin.reduce_early_stopping_decision(should_stop)
trainer.should_stop = should_stop