2020-08-20 02:03:22 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
2020-03-03 16:39:43 +00:00
|
|
|
r"""
|
|
|
|
Early Stopping
|
2020-08-13 13:58:05 +00:00
|
|
|
^^^^^^^^^^^^^^
|
2020-04-05 09:38:52 +00:00
|
|
|
|
2020-12-04 15:11:58 +00:00
|
|
|
Monitor a metric and stop training when it stops improving.
|
2020-03-03 16:39:43 +00:00
|
|
|
|
|
|
|
"""
|
2020-10-06 17:54:37 +00:00
|
|
|
|
2020-02-23 02:45:34 +00:00
|
|
|
import numpy as np
|
2020-04-19 20:41:54 +00:00
|
|
|
import torch
|
2020-02-23 02:45:34 +00:00
|
|
|
|
2020-03-19 13:14:29 +00:00
|
|
|
from pytorch_lightning.callbacks.base import Callback
|
2021-01-07 15:57:26 +00:00
|
|
|
from pytorch_lightning.utilities import rank_zero_info, rank_zero_warn
|
2021-01-12 07:31:26 +00:00
|
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
2020-04-19 20:41:54 +00:00
|
|
|
|
2020-10-06 17:54:37 +00:00
|
|
|
|
2020-02-23 02:45:34 +00:00
|
|
|
class EarlyStopping(Callback):
|
|
|
|
r"""
|
2020-12-04 15:11:58 +00:00
|
|
|
Monitor a metric and stop training when it stops improving.
|
2020-02-23 02:45:34 +00:00
|
|
|
|
|
|
|
Args:
|
2020-09-21 02:58:43 +00:00
|
|
|
monitor: quantity to be monitored. Default: ``'early_stop_on'``.
|
2020-04-05 09:38:52 +00:00
|
|
|
min_delta: minimum change in the monitored quantity
|
2020-02-23 02:45:34 +00:00
|
|
|
to qualify as an improvement, i.e. an absolute
|
|
|
|
change of less than `min_delta`, will count as no
|
2020-07-29 11:11:49 +00:00
|
|
|
improvement. Default: ``0.0``.
|
2020-05-25 17:33:00 +00:00
|
|
|
patience: number of validation epochs with no improvement
|
2020-07-29 11:11:49 +00:00
|
|
|
after which training will be stopped. Default: ``3``.
|
2020-04-05 09:38:52 +00:00
|
|
|
verbose: verbosity mode. Default: ``False``.
|
|
|
|
mode: one of {auto, min, max}. In `min` mode,
|
2020-02-23 02:45:34 +00:00
|
|
|
training will stop when the quantity
|
|
|
|
monitored has stopped decreasing; in `max`
|
|
|
|
mode it will stop when the quantity
|
|
|
|
monitored has stopped increasing; in `auto`
|
|
|
|
mode, the direction is automatically inferred
|
2020-12-04 15:11:58 +00:00
|
|
|
from the name of the monitored quantity.
|
|
|
|
|
|
|
|
.. warning::
|
|
|
|
Setting ``mode='auto'`` has been deprecated in v1.1 and will be removed in v1.3.
|
|
|
|
|
2020-04-05 09:38:52 +00:00
|
|
|
strict: whether to crash the training if `monitor` is
|
2020-05-25 17:33:00 +00:00
|
|
|
not found in the validation metrics. Default: ``True``.
|
2020-02-23 02:45:34 +00:00
|
|
|
|
2021-02-15 10:24:36 +00:00
|
|
|
Raises:
|
|
|
|
MisconfigurationException:
|
|
|
|
If ``mode`` is none of ``"min"``, ``"max"``, and ``"auto"``.
|
|
|
|
RuntimeError:
|
|
|
|
If the metric ``monitor`` is not available.
|
|
|
|
|
2020-02-23 02:45:34 +00:00
|
|
|
Example::
|
|
|
|
|
2020-04-05 09:38:52 +00:00
|
|
|
>>> from pytorch_lightning import Trainer
|
|
|
|
>>> from pytorch_lightning.callbacks import EarlyStopping
|
|
|
|
>>> early_stopping = EarlyStopping('val_loss')
|
2020-10-04 17:17:09 +00:00
|
|
|
>>> trainer = Trainer(callbacks=[early_stopping])
|
2020-02-23 02:45:34 +00:00
|
|
|
"""
|
2020-05-05 18:08:54 +00:00
|
|
|
mode_dict = {
|
|
|
|
'min': torch.lt,
|
|
|
|
'max': torch.gt,
|
|
|
|
}
|
2020-02-23 02:45:34 +00:00
|
|
|
|
2020-12-04 15:11:58 +00:00
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
monitor: str = 'early_stop_on',
|
|
|
|
min_delta: float = 0.0,
|
|
|
|
patience: int = 3,
|
|
|
|
verbose: bool = False,
|
|
|
|
mode: str = 'auto',
|
|
|
|
strict: bool = True,
|
|
|
|
):
|
2020-02-23 02:45:34 +00:00
|
|
|
super().__init__()
|
|
|
|
self.monitor = monitor
|
|
|
|
self.patience = patience
|
|
|
|
self.verbose = verbose
|
|
|
|
self.strict = strict
|
|
|
|
self.min_delta = min_delta
|
2020-06-29 01:36:46 +00:00
|
|
|
self.wait_count = 0
|
2020-02-23 02:45:34 +00:00
|
|
|
self.stopped_epoch = 0
|
2020-04-27 12:19:19 +00:00
|
|
|
self.mode = mode
|
2020-08-17 14:29:28 +00:00
|
|
|
self.warned_result_obj = False
|
2020-02-23 02:45:34 +00:00
|
|
|
|
2020-12-04 15:11:58 +00:00
|
|
|
self.__init_monitor_mode()
|
|
|
|
|
|
|
|
self.min_delta *= 1 if self.monitor_op == torch.gt else -1
|
|
|
|
torch_inf = torch.tensor(np.Inf)
|
|
|
|
self.best_score = torch_inf if self.monitor_op == torch.lt else -torch_inf
|
|
|
|
|
|
|
|
def __init_monitor_mode(self):
|
|
|
|
if self.mode not in self.mode_dict and self.mode != 'auto':
|
2021-02-08 19:28:38 +00:00
|
|
|
raise MisconfigurationException(f"`mode` can be auto, {', '.join(self.mode_dict.keys())}, got {self.mode}")
|
2020-02-23 02:45:34 +00:00
|
|
|
|
2021-01-12 07:31:26 +00:00
|
|
|
# TODO: Update with MisconfigurationException when auto mode is removed in v1.3
|
2020-05-05 18:08:54 +00:00
|
|
|
if self.mode == 'auto':
|
2020-12-04 15:11:58 +00:00
|
|
|
rank_zero_warn(
|
|
|
|
"mode='auto' is deprecated in v1.1 and will be removed in v1.3."
|
2021-02-08 19:28:38 +00:00
|
|
|
" Default value for mode with be 'min' in v1.3.", DeprecationWarning
|
2020-12-04 15:11:58 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
if "acc" in self.monitor or self.monitor.startswith("fmeasure"):
|
2020-05-05 18:08:54 +00:00
|
|
|
self.mode = 'max'
|
|
|
|
else:
|
|
|
|
self.mode = 'min'
|
|
|
|
|
2020-12-04 15:11:58 +00:00
|
|
|
if self.verbose > 0:
|
|
|
|
rank_zero_info(f'EarlyStopping mode set to {self.mode} for monitoring {self.monitor}.')
|
2020-04-19 20:41:54 +00:00
|
|
|
|
|
|
|
def _validate_condition_metric(self, logs):
|
2020-02-23 02:45:34 +00:00
|
|
|
monitor_val = logs.get(self.monitor)
|
2020-10-03 16:33:29 +00:00
|
|
|
|
2021-02-08 19:28:38 +00:00
|
|
|
error_msg = (
|
|
|
|
f'Early stopping conditioned on metric `{self.monitor}` which is not available.'
|
|
|
|
' Pass in or modify your `EarlyStopping` callback to use any of the following:'
|
|
|
|
f' `{"`, `".join(list(logs.keys()))}`'
|
|
|
|
)
|
2020-02-23 02:45:34 +00:00
|
|
|
|
|
|
|
if monitor_val is None:
|
|
|
|
if self.strict:
|
|
|
|
raise RuntimeError(error_msg)
|
|
|
|
if self.verbose > 0:
|
2020-04-09 18:05:46 +00:00
|
|
|
rank_zero_warn(error_msg, RuntimeWarning)
|
2020-02-23 02:45:34 +00:00
|
|
|
|
|
|
|
return False
|
|
|
|
|
|
|
|
return True
|
|
|
|
|
2020-04-27 12:19:19 +00:00
|
|
|
@property
|
|
|
|
def monitor_op(self):
|
2020-05-05 18:08:54 +00:00
|
|
|
return self.mode_dict[self.mode]
|
2020-04-27 12:19:19 +00:00
|
|
|
|
2020-08-28 14:50:52 +00:00
|
|
|
def on_save_checkpoint(self, trainer, pl_module):
|
2020-06-29 01:36:46 +00:00
|
|
|
return {
|
|
|
|
'wait_count': self.wait_count,
|
|
|
|
'stopped_epoch': self.stopped_epoch,
|
|
|
|
'best_score': self.best_score,
|
|
|
|
'patience': self.patience
|
|
|
|
}
|
|
|
|
|
2020-08-28 14:50:52 +00:00
|
|
|
def on_load_checkpoint(self, checkpointed_state):
|
|
|
|
self.wait_count = checkpointed_state['wait_count']
|
|
|
|
self.stopped_epoch = checkpointed_state['stopped_epoch']
|
|
|
|
self.best_score = checkpointed_state['best_score']
|
|
|
|
self.patience = checkpointed_state['patience']
|
2020-06-29 01:36:46 +00:00
|
|
|
|
2020-05-25 17:33:00 +00:00
|
|
|
def on_validation_end(self, trainer, pl_module):
|
2020-08-26 16:28:14 +00:00
|
|
|
if trainer.running_sanity_check:
|
|
|
|
return
|
|
|
|
|
2020-06-29 01:36:46 +00:00
|
|
|
self._run_early_stopping_check(trainer, pl_module)
|
2020-05-25 17:33:00 +00:00
|
|
|
|
|
|
|
def _run_early_stopping_check(self, trainer, pl_module):
|
2020-09-18 21:08:04 +00:00
|
|
|
"""
|
|
|
|
Checks whether the early stopping condition is met
|
|
|
|
and if so tells the trainer to stop the training.
|
|
|
|
"""
|
2021-01-05 02:54:49 +00:00
|
|
|
logs = trainer.callback_metrics
|
2020-07-20 23:00:20 +00:00
|
|
|
|
2021-01-05 02:54:49 +00:00
|
|
|
if (
|
|
|
|
trainer.fast_dev_run # disable early_stopping with fast_dev_run
|
|
|
|
or not self._validate_condition_metric(logs) # short circuit if metric not present
|
|
|
|
):
|
2020-06-29 01:36:46 +00:00
|
|
|
return # short circuit if metric not present
|
2020-02-23 02:45:34 +00:00
|
|
|
|
|
|
|
current = logs.get(self.monitor)
|
2020-07-20 23:00:20 +00:00
|
|
|
|
|
|
|
# when in dev debugging
|
2020-10-04 21:36:47 +00:00
|
|
|
trainer.dev_debugger.track_early_stopping_history(self, current)
|
2020-07-20 23:00:20 +00:00
|
|
|
|
2020-07-03 19:16:45 +00:00
|
|
|
if self.monitor_op(current - self.min_delta, self.best_score):
|
2020-06-29 01:36:46 +00:00
|
|
|
self.best_score = current
|
|
|
|
self.wait_count = 0
|
PoC: Accelerator refactor (#5743)
* restoring the result from subprocess
* fix queue.get() order for results
* add missing "block_backward_sync" context manager
* add missing "block_backward_sync" context manager
* fix sync_batchnorm
* fix supported gpu-ids for tuple
* fix clip gradients and inf recursion
* accelerator selection: added cluster_environment plugin
* fix torchelastic test
* fix reduce early stopping decision for DDP
* fix tests: callbacks, conversion to lightning optimizer
* fix lightning optimizer does not pickle
* fix setting benchmark and deterministic option
* fix slurm amp test
* fix prepare_data test and determine node_rank
* fix retrieving last path when testing
* remove obsolete plugin argument
* fix test: test_trainer_config
* fix torchscript tests
* fix trainer.model access
* move properties
* fix test_transfer_batch_hook
* fix auto_select_gpus
* fix omegaconf test
* fix test that needs to simulate slurm ddp
* add horovod plugin
* fix test with named arguments
* clean up whitespace
* fix datamodules test
* remove old accelerators
* fix naming
* move old plugins
* move to plugins
* create precision subpackage
* create training_type subpackage
* fix all new import errors
* fix wrong arguments order passed to test
* fix LR finder
* Added sharded training type and amp plugin
* Move clip grad to precision plugin
* Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically
* Fix import issue, attempting to fix tests
* Fix initial test
* Reflect hook logic from master, should wrap model after move to device
* Optional state consolidation, since master has optimizers not wrapped
* change attribute for instance test
* reset optimizers
optimizers are not used in main process, so state would be wrong.
* legacy
* imports in accel
* legacy2
* trainer imports
* fix import errors after rebase
* move hook to new setup location
* provide unwrapping logic
* fix trainer callback system
* added ddp2 implementation
* fix imports .legacy
* move plugins
* restore legacy
* drop test.py from root
* add tpu accelerator and plugins
* fixes
* fix lightning optimizer merge
* reset bugreportmodel
* unwrapping
* step routing forward
* model access
* unwrap
* opt
* integrate distrib_type
* sync changes
* sync
* fixes
* add forgotten generators
* add missing logic
* update
* import
* missed imports
* import fixes
* isort
* mv f
* changelog
* format
* move helper to parallel plugin
* d
* add world size
* clean up
* duplicate
* activate ddp_sharded and tpu
* set nvidia flags
* remove unused colab var
* use_tpu <-> on_tpu attrs
* make some ddp_cpu and clusterplugin tests pass
* Ref/accelerator connector (#5742)
* final cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* connector cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* trainer cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* accelerator cleanup + missing logic in accelerator connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add missing changes to callbacks
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* reflect accelerator changes to lightning module
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* clean cluster envs
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* cleanup plugins
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add broadcasting
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* yapf
* remove plugin connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* plugins
* manual optimization
* update optimizer routing
* add rank to torchelastic
* fix memory mixed precision
* setstate on trainer for pickling in ddp spawn
* add predict method
* add back commented accelerator code
* adapt test for sync_batch_norm to new plugin
* fix deprecated tests
* fix ddp cpu choice when no num_processes are given
* yapf format
* skip a memory test that cannot pass anymore
* fix pickle error in spawn plugin
* x
* avoid
* x
* fix cyclic import in docs build
* add support for sharded
* update typing
* add sharded and sharded_spawn to distributed types
* make unwrap model default
* refactor LightningShardedDataParallel similar to LightningDistributedDataParallel
* update sharded spawn to reflect changes
* update sharded to reflect changes
* Merge 1.1.5 changes
* fix merge
* fix merge
* yapf isort
* fix merge
* yapf isort
* fix indentation in test
* copy over reinit scheduler implementation from dev1.2
* fix apex tracking calls with dev_debugger
* reduce diff to dev1.2, clean up
* fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu
* sort plugin tests legacy/new
* fix error handling for amp on cpu
* fix merge
fix merge
fix merge
* [Feat] Resolve manual_backward (#5837)
* resolve manual_backward
* resolve flake8
* update
* resolve for ddp_spawn
* resolve flake8
* resolve flake8
* resolve flake8
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* fix tests/accelerator tests on cpu
* [BugFix] Resolve manual optimization (#5852)
* resolve manual_optimization
* update
* update
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856)
* resovle a bug
* Accelerator refactor sharded rpc (#5854)
* rpc branch
* merge
* update handling of rpc
* make devices etc. Optional in RPC
* set devices etc. later if necessary
* remove devices from sequential
* make devices optional in rpc
* fix import
* uncomment everything
* fix cluster selection
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* resolve bug
* fix assert in rpc test
* resolve a test
* fix docs compilation
* accelerator refactor - fix for sharded parity test (#5866)
* fix memory issue with ddp_spawn
* x
x
x
x
x
x
x
x
x
* x
* Remove DDP2 as this does not apply
* Add missing pre optimizer hook to ensure lambda closure is called
* fix apex docstring
* [accelerator][BugFix] Resolve some test for 1 gpu (#5863)
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* update
* resolve flake8
* update
* update
* update
* update
* update
* all_gather
* update
* make plugins work, add misconfig for RPC
* update
* update
* remove breaking test
* resolve some tests
* resolve flake8
* revert to ddp_spawn
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de>
* yapf isort
* resolve flake8
* fix apex doctests
* fix apex doctests 2
* resolve docs
* update drone
* clean env
* update
* update
* update
* update
* merge
* Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881)
* Fix RPC related tests, clean out old API, update for new accelerator API
* Move tests out of legacy folder, update paths and names
* Update test_remove_1-4.py
* Expose properties for tpu cores/gpus/num_gpus
* Add root GPU property
* Move properties to properties.py
* move tests that were previously in drone
* Fix root GPU property (#5908)
* Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator
* Add missing tests back
* fix best model path transfer when no checkpoint callback available
* Fix setup hook order [wip] (#5858)
* Call trainer setup hook before accelerator setup
* Add test case
* add new test
* typo
* fix callback order in test
Co-authored-by: tchaton <thomas@grid.ai>
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* rename ddp sequential -> rpc sequential for special test
* revert
* fix stupid merge problem
* Use property in connector for sampler (#5913)
* merge the import conflicts
* fix spawning of processes in slurm
* [wip] Fix some bugs for TPU [skip ci] (#5878)
* fixed for single tpu
* fixed spawn
* fixed spawn
* update
* update
* wip
* resolve bugs
* resolve bug
* update on comment
* removed decorator
* resolve comments
* set to 4
* update
* update
* need cleaning
* update
* update
* update
* resolve flake8
* resolve bugs
* exclude broadcast
* resolve bugs
* change test
* update
* update
* skip if meet fails
* properly raise trace
* update
* add catch
* wrap test
* resolve typo
* update
* typo
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
* resolve some tests
* update
* fix imports
* update
* resolve flake8
* update azure pipeline
* skip a sharded test on cpu that requires a gpu
* resolve tpus
* resolve bug
* resolve flake8
* update
* updat utils
* revert permission change on files
* suggestions from carlos
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting changes
* remove incomplete comment
* Update pytorch_lightning/accelerators/__init__.py
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting change
* add types
* warn 1.7 ddp manual backward only if ddp kwarg unset
* yapf + isort
* pep8 unused imports
* fix cyclic import in docs
* Apply suggestions from code review
* typer in accelerator.py
* typo
* Apply suggestions from code review
* formatting
* update on comments
* update typo
* Update pytorch_lightning/trainer/properties.py
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* update
* suggestion from code review
* suggestion from code review
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
Co-authored-by: SeanNaren <sean@grid.ai>
Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz>
Co-authored-by: chaton <thomas@grid.ai>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
|
|
|
should_stop = False
|
2020-02-23 02:45:34 +00:00
|
|
|
else:
|
2020-06-29 01:36:46 +00:00
|
|
|
self.wait_count += 1
|
2020-07-03 04:38:29 +00:00
|
|
|
should_stop = self.wait_count >= self.patience
|
|
|
|
|
|
|
|
if bool(should_stop):
|
2020-02-26 04:17:27 +00:00
|
|
|
self.stopped_epoch = trainer.current_epoch
|
2020-06-29 01:36:46 +00:00
|
|
|
trainer.should_stop = True
|
2020-02-23 02:45:34 +00:00
|
|
|
|
2020-07-03 04:38:29 +00:00
|
|
|
# stop every ddp process if any world process decides to stop
|
PoC: Accelerator refactor (#5743)
* restoring the result from subprocess
* fix queue.get() order for results
* add missing "block_backward_sync" context manager
* add missing "block_backward_sync" context manager
* fix sync_batchnorm
* fix supported gpu-ids for tuple
* fix clip gradients and inf recursion
* accelerator selection: added cluster_environment plugin
* fix torchelastic test
* fix reduce early stopping decision for DDP
* fix tests: callbacks, conversion to lightning optimizer
* fix lightning optimizer does not pickle
* fix setting benchmark and deterministic option
* fix slurm amp test
* fix prepare_data test and determine node_rank
* fix retrieving last path when testing
* remove obsolete plugin argument
* fix test: test_trainer_config
* fix torchscript tests
* fix trainer.model access
* move properties
* fix test_transfer_batch_hook
* fix auto_select_gpus
* fix omegaconf test
* fix test that needs to simulate slurm ddp
* add horovod plugin
* fix test with named arguments
* clean up whitespace
* fix datamodules test
* remove old accelerators
* fix naming
* move old plugins
* move to plugins
* create precision subpackage
* create training_type subpackage
* fix all new import errors
* fix wrong arguments order passed to test
* fix LR finder
* Added sharded training type and amp plugin
* Move clip grad to precision plugin
* Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically
* Fix import issue, attempting to fix tests
* Fix initial test
* Reflect hook logic from master, should wrap model after move to device
* Optional state consolidation, since master has optimizers not wrapped
* change attribute for instance test
* reset optimizers
optimizers are not used in main process, so state would be wrong.
* legacy
* imports in accel
* legacy2
* trainer imports
* fix import errors after rebase
* move hook to new setup location
* provide unwrapping logic
* fix trainer callback system
* added ddp2 implementation
* fix imports .legacy
* move plugins
* restore legacy
* drop test.py from root
* add tpu accelerator and plugins
* fixes
* fix lightning optimizer merge
* reset bugreportmodel
* unwrapping
* step routing forward
* model access
* unwrap
* opt
* integrate distrib_type
* sync changes
* sync
* fixes
* add forgotten generators
* add missing logic
* update
* import
* missed imports
* import fixes
* isort
* mv f
* changelog
* format
* move helper to parallel plugin
* d
* add world size
* clean up
* duplicate
* activate ddp_sharded and tpu
* set nvidia flags
* remove unused colab var
* use_tpu <-> on_tpu attrs
* make some ddp_cpu and clusterplugin tests pass
* Ref/accelerator connector (#5742)
* final cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* connector cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* trainer cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* accelerator cleanup + missing logic in accelerator connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add missing changes to callbacks
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* reflect accelerator changes to lightning module
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* clean cluster envs
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* cleanup plugins
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add broadcasting
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* yapf
* remove plugin connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* plugins
* manual optimization
* update optimizer routing
* add rank to torchelastic
* fix memory mixed precision
* setstate on trainer for pickling in ddp spawn
* add predict method
* add back commented accelerator code
* adapt test for sync_batch_norm to new plugin
* fix deprecated tests
* fix ddp cpu choice when no num_processes are given
* yapf format
* skip a memory test that cannot pass anymore
* fix pickle error in spawn plugin
* x
* avoid
* x
* fix cyclic import in docs build
* add support for sharded
* update typing
* add sharded and sharded_spawn to distributed types
* make unwrap model default
* refactor LightningShardedDataParallel similar to LightningDistributedDataParallel
* update sharded spawn to reflect changes
* update sharded to reflect changes
* Merge 1.1.5 changes
* fix merge
* fix merge
* yapf isort
* fix merge
* yapf isort
* fix indentation in test
* copy over reinit scheduler implementation from dev1.2
* fix apex tracking calls with dev_debugger
* reduce diff to dev1.2, clean up
* fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu
* sort plugin tests legacy/new
* fix error handling for amp on cpu
* fix merge
fix merge
fix merge
* [Feat] Resolve manual_backward (#5837)
* resolve manual_backward
* resolve flake8
* update
* resolve for ddp_spawn
* resolve flake8
* resolve flake8
* resolve flake8
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* fix tests/accelerator tests on cpu
* [BugFix] Resolve manual optimization (#5852)
* resolve manual_optimization
* update
* update
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856)
* resovle a bug
* Accelerator refactor sharded rpc (#5854)
* rpc branch
* merge
* update handling of rpc
* make devices etc. Optional in RPC
* set devices etc. later if necessary
* remove devices from sequential
* make devices optional in rpc
* fix import
* uncomment everything
* fix cluster selection
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* resolve bug
* fix assert in rpc test
* resolve a test
* fix docs compilation
* accelerator refactor - fix for sharded parity test (#5866)
* fix memory issue with ddp_spawn
* x
x
x
x
x
x
x
x
x
* x
* Remove DDP2 as this does not apply
* Add missing pre optimizer hook to ensure lambda closure is called
* fix apex docstring
* [accelerator][BugFix] Resolve some test for 1 gpu (#5863)
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* update
* resolve flake8
* update
* update
* update
* update
* update
* all_gather
* update
* make plugins work, add misconfig for RPC
* update
* update
* remove breaking test
* resolve some tests
* resolve flake8
* revert to ddp_spawn
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de>
* yapf isort
* resolve flake8
* fix apex doctests
* fix apex doctests 2
* resolve docs
* update drone
* clean env
* update
* update
* update
* update
* merge
* Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881)
* Fix RPC related tests, clean out old API, update for new accelerator API
* Move tests out of legacy folder, update paths and names
* Update test_remove_1-4.py
* Expose properties for tpu cores/gpus/num_gpus
* Add root GPU property
* Move properties to properties.py
* move tests that were previously in drone
* Fix root GPU property (#5908)
* Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator
* Add missing tests back
* fix best model path transfer when no checkpoint callback available
* Fix setup hook order [wip] (#5858)
* Call trainer setup hook before accelerator setup
* Add test case
* add new test
* typo
* fix callback order in test
Co-authored-by: tchaton <thomas@grid.ai>
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* rename ddp sequential -> rpc sequential for special test
* revert
* fix stupid merge problem
* Use property in connector for sampler (#5913)
* merge the import conflicts
* fix spawning of processes in slurm
* [wip] Fix some bugs for TPU [skip ci] (#5878)
* fixed for single tpu
* fixed spawn
* fixed spawn
* update
* update
* wip
* resolve bugs
* resolve bug
* update on comment
* removed decorator
* resolve comments
* set to 4
* update
* update
* need cleaning
* update
* update
* update
* resolve flake8
* resolve bugs
* exclude broadcast
* resolve bugs
* change test
* update
* update
* skip if meet fails
* properly raise trace
* update
* add catch
* wrap test
* resolve typo
* update
* typo
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
* resolve some tests
* update
* fix imports
* update
* resolve flake8
* update azure pipeline
* skip a sharded test on cpu that requires a gpu
* resolve tpus
* resolve bug
* resolve flake8
* update
* updat utils
* revert permission change on files
* suggestions from carlos
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting changes
* remove incomplete comment
* Update pytorch_lightning/accelerators/__init__.py
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting change
* add types
* warn 1.7 ddp manual backward only if ddp kwarg unset
* yapf + isort
* pep8 unused imports
* fix cyclic import in docs
* Apply suggestions from code review
* typer in accelerator.py
* typo
* Apply suggestions from code review
* formatting
* update on comments
* update typo
* Update pytorch_lightning/trainer/properties.py
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* update
* suggestion from code review
* suggestion from code review
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
Co-authored-by: SeanNaren <sean@grid.ai>
Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz>
Co-authored-by: chaton <thomas@grid.ai>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
|
|
|
should_stop = trainer.training_type_plugin.reduce_early_stopping_decision(should_stop)
|
2020-09-11 14:56:21 +00:00
|
|
|
trainer.should_stop = should_stop
|