159 lines
4.9 KiB
Python
159 lines
4.9 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
class UNet(nn.Module):
|
|
"""Architecture based on U-Net: Convolutional Networks for Biomedical Image Segmentation.
|
|
|
|
Link - https://arxiv.org/abs/1505.04597
|
|
|
|
>>> UNet(num_classes=2, num_layers=3) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
|
|
UNet(
|
|
(layers): ModuleList(
|
|
(0): DoubleConv(...)
|
|
(1): Down(...)
|
|
(2): Down(...)
|
|
(3): Up(...)
|
|
(4): Up(...)
|
|
(5): Conv2d(64, 2, kernel_size=(1, 1), stride=(1, 1))
|
|
)
|
|
)
|
|
"""
|
|
|
|
def __init__(self, num_classes: int = 19, num_layers: int = 5, features_start: int = 64, bilinear: bool = False):
|
|
"""
|
|
Args:
|
|
num_classes: Number of output classes required (default 19 for KITTI dataset)
|
|
num_layers: Number of layers in each side of U-net
|
|
features_start: Number of features in first layer
|
|
bilinear: Whether to use bilinear interpolation or transposed convolutions for upsampling.
|
|
"""
|
|
super().__init__()
|
|
self.num_layers = num_layers
|
|
|
|
layers = [DoubleConv(3, features_start)]
|
|
|
|
feats = features_start
|
|
for _ in range(num_layers - 1):
|
|
layers.append(Down(feats, feats * 2))
|
|
feats *= 2
|
|
|
|
for _ in range(num_layers - 1):
|
|
layers.append(Up(feats, feats // 2, bilinear))
|
|
feats //= 2
|
|
|
|
layers.append(nn.Conv2d(feats, num_classes, kernel_size=1))
|
|
|
|
self.layers = nn.ModuleList(layers)
|
|
|
|
def forward(self, x):
|
|
xi = [self.layers[0](x)]
|
|
# Down path
|
|
for layer in self.layers[1 : self.num_layers]:
|
|
xi.append(layer(xi[-1]))
|
|
# Up path
|
|
for i, layer in enumerate(self.layers[self.num_layers : -1]):
|
|
xi[-1] = layer(xi[-1], xi[-2 - i])
|
|
return self.layers[-1](xi[-1])
|
|
|
|
|
|
class DoubleConv(nn.Module):
|
|
"""Double Convolution and BN and ReLU (3x3 conv -> BN -> ReLU) ** 2.
|
|
|
|
>>> DoubleConv(4, 4) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
|
|
DoubleConv(
|
|
(net): Sequential(...)
|
|
)
|
|
"""
|
|
|
|
def __init__(self, in_ch: int, out_ch: int):
|
|
super().__init__()
|
|
self.net = nn.Sequential(
|
|
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
|
|
nn.BatchNorm2d(out_ch),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
|
|
nn.BatchNorm2d(out_ch),
|
|
nn.ReLU(inplace=True),
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
|
|
class Down(nn.Module):
|
|
"""Combination of MaxPool2d and DoubleConv in series.
|
|
|
|
>>> Down(4, 8) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
|
|
Down(
|
|
(net): Sequential(
|
|
(0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
|
|
(1): DoubleConv(
|
|
(net): Sequential(...)
|
|
)
|
|
)
|
|
)
|
|
"""
|
|
|
|
def __init__(self, in_ch: int, out_ch: int):
|
|
super().__init__()
|
|
self.net = nn.Sequential(nn.MaxPool2d(kernel_size=2, stride=2), DoubleConv(in_ch, out_ch))
|
|
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
|
|
class Up(nn.Module):
|
|
"""Upsampling (by either bilinear interpolation or transpose convolutions) followed by concatenation of feature
|
|
map from contracting path, followed by double 3x3 convolution.
|
|
|
|
>>> Up(8, 4) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
|
|
Up(
|
|
(upsample): ConvTranspose2d(8, 4, kernel_size=(2, 2), stride=(2, 2))
|
|
(conv): DoubleConv(
|
|
(net): Sequential(...)
|
|
)
|
|
)
|
|
"""
|
|
|
|
def __init__(self, in_ch: int, out_ch: int, bilinear: bool = False):
|
|
super().__init__()
|
|
self.upsample = None
|
|
if bilinear:
|
|
self.upsample = nn.Sequential(
|
|
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True),
|
|
nn.Conv2d(in_ch, in_ch // 2, kernel_size=1),
|
|
)
|
|
else:
|
|
self.upsample = nn.ConvTranspose2d(in_ch, in_ch // 2, kernel_size=2, stride=2)
|
|
|
|
self.conv = DoubleConv(in_ch, out_ch)
|
|
|
|
def forward(self, x1, x2):
|
|
x1 = self.upsample(x1)
|
|
|
|
# Pad x1 to the size of x2
|
|
diff_h = x2.shape[2] - x1.shape[2]
|
|
diff_w = x2.shape[3] - x1.shape[3]
|
|
|
|
x1 = F.pad(x1, [diff_w // 2, diff_w - diff_w // 2, diff_h // 2, diff_h - diff_h // 2])
|
|
|
|
# Concatenate along the channels axis
|
|
x = torch.cat([x2, x1], dim=1)
|
|
return self.conv(x)
|