lightning/pl_examples/domain_templates/unet.py

159 lines
4.9 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
import torch.nn.functional as F
class UNet(nn.Module):
"""Architecture based on U-Net: Convolutional Networks for Biomedical Image Segmentation.
Link - https://arxiv.org/abs/1505.04597
>>> UNet(num_classes=2, num_layers=3) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
UNet(
(layers): ModuleList(
(0): DoubleConv(...)
(1): Down(...)
(2): Down(...)
(3): Up(...)
(4): Up(...)
(5): Conv2d(64, 2, kernel_size=(1, 1), stride=(1, 1))
)
)
"""
def __init__(self, num_classes: int = 19, num_layers: int = 5, features_start: int = 64, bilinear: bool = False):
"""
Args:
num_classes: Number of output classes required (default 19 for KITTI dataset)
num_layers: Number of layers in each side of U-net
features_start: Number of features in first layer
bilinear: Whether to use bilinear interpolation or transposed convolutions for upsampling.
"""
super().__init__()
self.num_layers = num_layers
layers = [DoubleConv(3, features_start)]
feats = features_start
for _ in range(num_layers - 1):
layers.append(Down(feats, feats * 2))
feats *= 2
for _ in range(num_layers - 1):
layers.append(Up(feats, feats // 2, bilinear))
feats //= 2
layers.append(nn.Conv2d(feats, num_classes, kernel_size=1))
self.layers = nn.ModuleList(layers)
def forward(self, x):
xi = [self.layers[0](x)]
# Down path
for layer in self.layers[1 : self.num_layers]:
xi.append(layer(xi[-1]))
# Up path
for i, layer in enumerate(self.layers[self.num_layers : -1]):
xi[-1] = layer(xi[-1], xi[-2 - i])
return self.layers[-1](xi[-1])
class DoubleConv(nn.Module):
"""Double Convolution and BN and ReLU (3x3 conv -> BN -> ReLU) ** 2.
>>> DoubleConv(4, 4) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
DoubleConv(
(net): Sequential(...)
)
"""
def __init__(self, in_ch: int, out_ch: int):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
)
def forward(self, x):
return self.net(x)
class Down(nn.Module):
"""Combination of MaxPool2d and DoubleConv in series.
>>> Down(4, 8) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
Down(
(net): Sequential(
(0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(1): DoubleConv(
(net): Sequential(...)
)
)
)
"""
def __init__(self, in_ch: int, out_ch: int):
super().__init__()
self.net = nn.Sequential(nn.MaxPool2d(kernel_size=2, stride=2), DoubleConv(in_ch, out_ch))
def forward(self, x):
return self.net(x)
class Up(nn.Module):
"""Upsampling (by either bilinear interpolation or transpose convolutions) followed by concatenation of feature
map from contracting path, followed by double 3x3 convolution.
>>> Up(8, 4) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
Up(
(upsample): ConvTranspose2d(8, 4, kernel_size=(2, 2), stride=(2, 2))
(conv): DoubleConv(
(net): Sequential(...)
)
)
"""
def __init__(self, in_ch: int, out_ch: int, bilinear: bool = False):
super().__init__()
self.upsample = None
if bilinear:
self.upsample = nn.Sequential(
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True),
nn.Conv2d(in_ch, in_ch // 2, kernel_size=1),
)
else:
self.upsample = nn.ConvTranspose2d(in_ch, in_ch // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_ch, out_ch)
def forward(self, x1, x2):
x1 = self.upsample(x1)
# Pad x1 to the size of x2
diff_h = x2.shape[2] - x1.shape[2]
diff_w = x2.shape[3] - x1.shape[3]
x1 = F.pad(x1, [diff_w // 2, diff_w - diff_w // 2, diff_h // 2, diff_h - diff_h // 2])
# Concatenate along the channels axis
x = torch.cat([x2, x1], dim=1)
return self.conv(x)