# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F class UNet(nn.Module): """Architecture based on U-Net: Convolutional Networks for Biomedical Image Segmentation. Link - https://arxiv.org/abs/1505.04597 >>> UNet(num_classes=2, num_layers=3) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE UNet( (layers): ModuleList( (0): DoubleConv(...) (1): Down(...) (2): Down(...) (3): Up(...) (4): Up(...) (5): Conv2d(64, 2, kernel_size=(1, 1), stride=(1, 1)) ) ) """ def __init__(self, num_classes: int = 19, num_layers: int = 5, features_start: int = 64, bilinear: bool = False): """ Args: num_classes: Number of output classes required (default 19 for KITTI dataset) num_layers: Number of layers in each side of U-net features_start: Number of features in first layer bilinear: Whether to use bilinear interpolation or transposed convolutions for upsampling. """ super().__init__() self.num_layers = num_layers layers = [DoubleConv(3, features_start)] feats = features_start for _ in range(num_layers - 1): layers.append(Down(feats, feats * 2)) feats *= 2 for _ in range(num_layers - 1): layers.append(Up(feats, feats // 2, bilinear)) feats //= 2 layers.append(nn.Conv2d(feats, num_classes, kernel_size=1)) self.layers = nn.ModuleList(layers) def forward(self, x): xi = [self.layers[0](x)] # Down path for layer in self.layers[1 : self.num_layers]: xi.append(layer(xi[-1])) # Up path for i, layer in enumerate(self.layers[self.num_layers : -1]): xi[-1] = layer(xi[-1], xi[-2 - i]) return self.layers[-1](xi[-1]) class DoubleConv(nn.Module): """Double Convolution and BN and ReLU (3x3 conv -> BN -> ReLU) ** 2. >>> DoubleConv(4, 4) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE DoubleConv( (net): Sequential(...) ) """ def __init__(self, in_ch: int, out_ch: int): super().__init__() self.net = nn.Sequential( nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), ) def forward(self, x): return self.net(x) class Down(nn.Module): """Combination of MaxPool2d and DoubleConv in series. >>> Down(4, 8) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE Down( (net): Sequential( (0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (1): DoubleConv( (net): Sequential(...) ) ) ) """ def __init__(self, in_ch: int, out_ch: int): super().__init__() self.net = nn.Sequential(nn.MaxPool2d(kernel_size=2, stride=2), DoubleConv(in_ch, out_ch)) def forward(self, x): return self.net(x) class Up(nn.Module): """Upsampling (by either bilinear interpolation or transpose convolutions) followed by concatenation of feature map from contracting path, followed by double 3x3 convolution. >>> Up(8, 4) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE Up( (upsample): ConvTranspose2d(8, 4, kernel_size=(2, 2), stride=(2, 2)) (conv): DoubleConv( (net): Sequential(...) ) ) """ def __init__(self, in_ch: int, out_ch: int, bilinear: bool = False): super().__init__() self.upsample = None if bilinear: self.upsample = nn.Sequential( nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True), nn.Conv2d(in_ch, in_ch // 2, kernel_size=1), ) else: self.upsample = nn.ConvTranspose2d(in_ch, in_ch // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_ch, out_ch) def forward(self, x1, x2): x1 = self.upsample(x1) # Pad x1 to the size of x2 diff_h = x2.shape[2] - x1.shape[2] diff_w = x2.shape[3] - x1.shape[3] x1 = F.pad(x1, [diff_w // 2, diff_w - diff_w // 2, diff_h // 2, diff_h - diff_h // 2]) # Concatenate along the channels axis x = torch.cat([x2, x1], dim=1) return self.conv(x)