lightning/pytorch_lightning/trainer/configuration_validator.py

109 lines
5.2 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.trainer.states import TrainerState
from pytorch_lightning.utilities import rank_zero_warn
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.model_helpers import is_overridden
class ConfigValidator(object):
def __init__(self, trainer):
self.trainer = trainer
def verify_loop_configurations(self, model: LightningModule) -> None:
r"""
Checks that the model is configured correctly before the run is started.
Args:
model: The model to check the configuration.
"""
if self.trainer.state == TrainerState.FITTING:
self.__verify_train_loop_configuration(model)
self.__verify_eval_loop_configuration(model, 'val')
elif self.trainer.state == TrainerState.TUNING:
self.__verify_train_loop_configuration(model)
elif self.trainer.state == TrainerState.VALIDATING:
self.__verify_eval_loop_configuration(model, 'val')
elif self.trainer.state == TrainerState.TESTING:
self.__verify_eval_loop_configuration(model, 'test')
elif self.trainer.state == TrainerState.PREDICTING:
self.__verify_predict_loop_configuration(model)
def __verify_train_loop_configuration(self, model):
# -----------------------------------
# verify model has a training step
# -----------------------------------
has_training_step = is_overridden('training_step', model)
if not has_training_step:
raise MisconfigurationException(
'No `training_step()` method defined. Lightning `Trainer` expects as minimum a'
' `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined.'
)
# -----------------------------------
# verify model has a train dataloader
# -----------------------------------
has_train_dataloader = is_overridden('train_dataloader', model)
if not has_train_dataloader:
raise MisconfigurationException(
'No `train_dataloader()` method defined. Lightning `Trainer` expects as minimum a'
' `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined.'
)
# -----------------------------------
# verify model has optimizer
# -----------------------------------
has_optimizers = is_overridden('configure_optimizers', model)
if not has_optimizers:
raise MisconfigurationException(
'No `configure_optimizers()` method defined. Lightning `Trainer` expects as minimum a'
' `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined.'
)
trainer = self.trainer
trainer.overriden_optimizer_step = is_overridden('optimizer_step', model)
trainer.overriden_optimizer_zero_grad = is_overridden('optimizer_zero_grad', model)
automatic_optimization = trainer.train_loop.automatic_optimization
going_to_accumulate_grad_batches = trainer.accumulation_scheduler.going_to_accumulate_grad_batches()
has_overriden_optimization_functions = trainer.overriden_optimizer_step or trainer.overriden_optimizer_zero_grad
if (has_overriden_optimization_functions) and going_to_accumulate_grad_batches and automatic_optimization:
raise MisconfigurationException(
'When overriding `LightningModule` optimizer_step or optimizer_zero_grad,'
' `accumulate_grad_batches` in `Trainer` should be 1.'
' It ensures optimizer_step or optimizer_zero_grad are called on every batch.'
)
def __verify_eval_loop_configuration(self, model: LightningModule, stage: str) -> None:
loader_name = f'{stage}_dataloader'
step_name = 'validation_step' if stage == 'val' else 'test_step'
has_loader = is_overridden(loader_name, model)
has_step = is_overridden(step_name, model)
if has_loader and not has_step:
rank_zero_warn(f'you passed in a {loader_name} but have no {step_name}. Skipping {stage} loop')
if has_step and not has_loader:
rank_zero_warn(f'you defined a {step_name} but have no {loader_name}. Skipping {stage} loop')
def __verify_predict_loop_configuration(self, model: LightningModule) -> None:
has_predict_dataloader = is_overridden('predict_dataloader', model)
if not has_predict_dataloader:
raise MisconfigurationException('Dataloader not found for `Trainer.predict`')