# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pytorch_lightning.core.lightning import LightningModule from pytorch_lightning.trainer.states import TrainerState from pytorch_lightning.utilities import rank_zero_warn from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.model_helpers import is_overridden class ConfigValidator(object): def __init__(self, trainer): self.trainer = trainer def verify_loop_configurations(self, model: LightningModule) -> None: r""" Checks that the model is configured correctly before the run is started. Args: model: The model to check the configuration. """ if self.trainer.state == TrainerState.FITTING: self.__verify_train_loop_configuration(model) self.__verify_eval_loop_configuration(model, 'val') elif self.trainer.state == TrainerState.TUNING: self.__verify_train_loop_configuration(model) elif self.trainer.state == TrainerState.VALIDATING: self.__verify_eval_loop_configuration(model, 'val') elif self.trainer.state == TrainerState.TESTING: self.__verify_eval_loop_configuration(model, 'test') elif self.trainer.state == TrainerState.PREDICTING: self.__verify_predict_loop_configuration(model) def __verify_train_loop_configuration(self, model): # ----------------------------------- # verify model has a training step # ----------------------------------- has_training_step = is_overridden('training_step', model) if not has_training_step: raise MisconfigurationException( 'No `training_step()` method defined. Lightning `Trainer` expects as minimum a' ' `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined.' ) # ----------------------------------- # verify model has a train dataloader # ----------------------------------- has_train_dataloader = is_overridden('train_dataloader', model) if not has_train_dataloader: raise MisconfigurationException( 'No `train_dataloader()` method defined. Lightning `Trainer` expects as minimum a' ' `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined.' ) # ----------------------------------- # verify model has optimizer # ----------------------------------- has_optimizers = is_overridden('configure_optimizers', model) if not has_optimizers: raise MisconfigurationException( 'No `configure_optimizers()` method defined. Lightning `Trainer` expects as minimum a' ' `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined.' ) trainer = self.trainer trainer.overriden_optimizer_step = is_overridden('optimizer_step', model) trainer.overriden_optimizer_zero_grad = is_overridden('optimizer_zero_grad', model) automatic_optimization = trainer.train_loop.automatic_optimization going_to_accumulate_grad_batches = trainer.accumulation_scheduler.going_to_accumulate_grad_batches() has_overriden_optimization_functions = trainer.overriden_optimizer_step or trainer.overriden_optimizer_zero_grad if (has_overriden_optimization_functions) and going_to_accumulate_grad_batches and automatic_optimization: raise MisconfigurationException( 'When overriding `LightningModule` optimizer_step or optimizer_zero_grad,' ' `accumulate_grad_batches` in `Trainer` should be 1.' ' It ensures optimizer_step or optimizer_zero_grad are called on every batch.' ) def __verify_eval_loop_configuration(self, model: LightningModule, stage: str) -> None: loader_name = f'{stage}_dataloader' step_name = 'validation_step' if stage == 'val' else 'test_step' has_loader = is_overridden(loader_name, model) has_step = is_overridden(step_name, model) if has_loader and not has_step: rank_zero_warn(f'you passed in a {loader_name} but have no {step_name}. Skipping {stage} loop') if has_step and not has_loader: rank_zero_warn(f'you defined a {step_name} but have no {loader_name}. Skipping {stage} loop') def __verify_predict_loop_configuration(self, model: LightningModule) -> None: has_predict_dataloader = is_overridden('predict_dataloader', model) if not has_predict_dataloader: raise MisconfigurationException('Dataloader not found for `Trainer.predict`')