lightning/tests/trainer/test_trainer_tricks.py

131 lines
3.9 KiB
Python
Executable File

import pytest
import torch
import tests.base.utils as tutils
from pytorch_lightning import Trainer
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.base import EvalModelTemplate
def test_model_reset_correctly(tmpdir):
""" Check that model weights are correctly reset after scaling batch size. """
tutils.reset_seed()
model = EvalModelTemplate()
# logger file to get meta
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1
)
before_state_dict = model.state_dict()
trainer.scale_batch_size(model, max_trials=5)
after_state_dict = model.state_dict()
for key in before_state_dict.keys():
assert torch.all(torch.eq(before_state_dict[key], after_state_dict[key])), \
'Model was not reset correctly after scaling batch size'
def test_trainer_reset_correctly(tmpdir):
""" Check that all trainer parameters are reset correctly after scaling batch size. """
tutils.reset_seed()
model = EvalModelTemplate()
# logger file to get meta
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1
)
changed_attributes = ['max_steps',
'weights_summary',
'logger',
'callbacks',
'checkpoint_callback',
'early_stop_callback',
'enable_early_stop',
'train_percent_check']
attributes_before = {}
for ca in changed_attributes:
attributes_before[ca] = getattr(trainer, ca)
trainer.scale_batch_size(model, max_trials=5)
attributes_after = {}
for ca in changed_attributes:
attributes_after[ca] = getattr(trainer, ca)
for key in changed_attributes:
assert attributes_before[key] == attributes_after[key], \
f'Attribute {key} was not reset correctly after learning rate finder'
@pytest.mark.parametrize('scale_arg', ['power', 'binsearch'])
def test_trainer_arg(tmpdir, scale_arg):
""" Check that trainer arg works with bool input. """
tutils.reset_seed()
hparams = EvalModelTemplate.get_default_hparams()
model = EvalModelTemplate(**hparams)
before_batch_size = hparams.get('batch_size')
# logger file to get meta
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
auto_scale_batch_size=scale_arg,
)
trainer.fit(model)
after_batch_size = model.batch_size
assert before_batch_size != after_batch_size, \
'Batch size was not altered after running auto scaling of batch size'
@pytest.mark.parametrize('scale_method', ['power', 'binsearch'])
def test_call_to_trainer_method(tmpdir, scale_method):
""" Test that calling the trainer method itself works. """
tutils.reset_seed()
hparams = EvalModelTemplate.get_default_hparams()
model = EvalModelTemplate(**hparams)
before_batch_size = hparams.get('batch_size')
# logger file to get meta
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
)
after_batch_size = trainer.scale_batch_size(model, mode=scale_method, max_trials=5)
model.batch_size = after_batch_size
trainer.fit(model)
assert before_batch_size != after_batch_size, \
'Batch size was not altered after running auto scaling of batch size'
def test_error_on_dataloader_passed_to_fit(tmpdir):
"""Verify that when the auto scale batch size feature raises an error
if a train dataloader is passed to fit """
# only train passed to fit
model = EvalModelTemplate()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
val_percent_check=0.1,
train_percent_check=0.2,
auto_scale_batch_size='power'
)
fit_options = dict(train_dataloader=model.dataloader(train=True))
with pytest.raises(MisconfigurationException):
trainer.fit(model, **fit_options)