278 lines
8.2 KiB
Python
278 lines
8.2 KiB
Python
import glob
|
|
import logging as log
|
|
import os
|
|
import pickle
|
|
|
|
import cloudpickle
|
|
import pytest
|
|
import torch
|
|
|
|
import tests.base.utils as tutils
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.callbacks import ModelCheckpoint
|
|
from tests.base import EvalModelTemplate
|
|
|
|
|
|
@pytest.mark.spawn
|
|
@pytest.mark.parametrize("backend", ['dp', 'ddp'])
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
|
def test_running_test_pretrained_model_distrib(tmpdir, backend):
|
|
"""Verify `test()` on pretrained model."""
|
|
tutils.set_random_master_port()
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
# exp file to get meta
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
|
|
# exp file to get weights
|
|
checkpoint = tutils.init_checkpoint_callback(logger)
|
|
|
|
trainer_options = dict(
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=2,
|
|
train_percent_check=0.4,
|
|
val_percent_check=0.2,
|
|
checkpoint_callback=checkpoint,
|
|
logger=logger,
|
|
gpus=[0, 1],
|
|
distributed_backend=backend,
|
|
)
|
|
|
|
# fit model
|
|
trainer = Trainer(**trainer_options)
|
|
result = trainer.fit(model)
|
|
|
|
log.info(os.listdir(tutils.get_data_path(logger, path_dir=tmpdir)))
|
|
|
|
# correct result and ok accuracy
|
|
assert result == 1, 'training failed to complete'
|
|
pretrained_model = tutils.load_model(logger,
|
|
trainer.checkpoint_callback.dirpath,
|
|
module_class=EvalModelTemplate)
|
|
|
|
# run test set
|
|
new_trainer = Trainer(**trainer_options)
|
|
new_trainer.test(pretrained_model)
|
|
|
|
# test we have good test accuracy
|
|
tutils.assert_ok_model_acc(new_trainer)
|
|
|
|
dataloaders = model.test_dataloader()
|
|
if not isinstance(dataloaders, list):
|
|
dataloaders = [dataloaders]
|
|
|
|
for dataloader in dataloaders:
|
|
tutils.run_prediction(dataloader, pretrained_model)
|
|
|
|
|
|
def test_running_test_pretrained_model_cpu(tmpdir):
|
|
"""Verify test() on pretrained model."""
|
|
model = EvalModelTemplate()
|
|
|
|
# logger file to get meta
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
|
|
# logger file to get weights
|
|
checkpoint = tutils.init_checkpoint_callback(logger)
|
|
|
|
trainer_options = dict(
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=3,
|
|
train_percent_check=0.4,
|
|
val_percent_check=0.2,
|
|
checkpoint_callback=checkpoint,
|
|
logger=logger
|
|
)
|
|
|
|
# fit model
|
|
trainer = Trainer(**trainer_options)
|
|
result = trainer.fit(model)
|
|
|
|
# correct result and ok accuracy
|
|
assert result == 1, 'training failed to complete'
|
|
pretrained_model = tutils.load_model(
|
|
logger, trainer.checkpoint_callback.dirpath, module_class=EvalModelTemplate
|
|
)
|
|
|
|
new_trainer = Trainer(**trainer_options)
|
|
new_trainer.test(pretrained_model)
|
|
|
|
# test we have good test accuracy
|
|
tutils.assert_ok_model_acc(new_trainer)
|
|
|
|
|
|
def test_load_model_from_checkpoint(tmpdir):
|
|
"""Verify test() on pretrained model."""
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
model = EvalModelTemplate(**hparams)
|
|
|
|
trainer_options = dict(
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=2,
|
|
train_percent_check=0.4,
|
|
val_percent_check=0.2,
|
|
checkpoint_callback=ModelCheckpoint(tmpdir, save_top_k=-1),
|
|
default_root_dir=tmpdir,
|
|
)
|
|
|
|
# fit model
|
|
trainer = Trainer(**trainer_options)
|
|
result = trainer.fit(model)
|
|
trainer.test(ckpt_path=None)
|
|
|
|
# correct result and ok accuracy
|
|
assert result == 1, 'training failed to complete'
|
|
|
|
# load last checkpoint
|
|
last_checkpoint = sorted(glob.glob(os.path.join(trainer.checkpoint_callback.dirpath, "*.ckpt")))[-1]
|
|
pretrained_model = EvalModelTemplate.load_from_checkpoint(last_checkpoint)
|
|
|
|
# test that hparams loaded correctly
|
|
for k, v in hparams.items():
|
|
assert getattr(pretrained_model, k) == v
|
|
|
|
# assert weights are the same
|
|
for (old_name, old_p), (new_name, new_p) in zip(model.named_parameters(), pretrained_model.named_parameters()):
|
|
assert torch.all(torch.eq(old_p, new_p)), 'loaded weights are not the same as the saved weights'
|
|
|
|
new_trainer = Trainer(**trainer_options)
|
|
new_trainer.test(pretrained_model)
|
|
|
|
# test we have good test accuracy
|
|
tutils.assert_ok_model_acc(new_trainer)
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
|
def test_dp_resume(tmpdir):
|
|
"""Make sure DP continues training correctly."""
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
model = EvalModelTemplate(**hparams)
|
|
|
|
trainer_options = dict(
|
|
max_epochs=1,
|
|
gpus=2,
|
|
distributed_backend='dp',
|
|
)
|
|
|
|
# get logger
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
|
|
# exp file to get weights
|
|
# logger file to get weights
|
|
checkpoint = tutils.init_checkpoint_callback(logger)
|
|
|
|
# add these to the trainer options
|
|
trainer_options['logger'] = logger
|
|
trainer_options['checkpoint_callback'] = checkpoint
|
|
|
|
# fit model
|
|
trainer = Trainer(**trainer_options)
|
|
trainer.is_slurm_managing_tasks = True
|
|
result = trainer.fit(model)
|
|
|
|
# track epoch before saving. Increment since we finished the current epoch, don't want to rerun
|
|
real_global_epoch = trainer.current_epoch + 1
|
|
|
|
# correct result and ok accuracy
|
|
assert result == 1, 'amp + dp model failed to complete'
|
|
|
|
# ---------------------------
|
|
# HPC LOAD/SAVE
|
|
# ---------------------------
|
|
# save
|
|
trainer.hpc_save(tmpdir, logger)
|
|
|
|
# init new trainer
|
|
new_logger = tutils.get_default_logger(tmpdir, version=logger.version)
|
|
trainer_options['logger'] = new_logger
|
|
trainer_options['checkpoint_callback'] = ModelCheckpoint(tmpdir)
|
|
trainer_options['train_percent_check'] = 0.5
|
|
trainer_options['val_percent_check'] = 0.2
|
|
trainer_options['max_epochs'] = 1
|
|
new_trainer = Trainer(**trainer_options)
|
|
|
|
# set the epoch start hook so we can predict before the model does the full training
|
|
def assert_good_acc():
|
|
assert new_trainer.current_epoch == real_global_epoch and new_trainer.current_epoch > 0
|
|
|
|
# if model and state loaded correctly, predictions will be good even though we
|
|
# haven't trained with the new loaded model
|
|
dp_model = new_trainer.model
|
|
dp_model.eval()
|
|
|
|
dataloader = trainer.train_dataloader
|
|
tutils.run_prediction(dataloader, dp_model, dp=True)
|
|
|
|
# new model
|
|
model = EvalModelTemplate(**hparams)
|
|
model.on_train_start = assert_good_acc
|
|
|
|
# fit new model which should load hpc weights
|
|
new_trainer.fit(model)
|
|
|
|
# test freeze on gpu
|
|
model.freeze()
|
|
model.unfreeze()
|
|
|
|
|
|
def test_model_saving_loading(tmpdir):
|
|
"""Tests use case where trainer saves the model, and user loads it from tags independently."""
|
|
model = EvalModelTemplate()
|
|
|
|
# logger file to get meta
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
|
|
trainer_options = dict(
|
|
max_epochs=1,
|
|
logger=logger,
|
|
checkpoint_callback=ModelCheckpoint(tmpdir)
|
|
)
|
|
|
|
# fit model
|
|
trainer = Trainer(**trainer_options)
|
|
result = trainer.fit(model)
|
|
|
|
# traning complete
|
|
assert result == 1, 'amp + ddp model failed to complete'
|
|
|
|
# make a prediction
|
|
dataloaders = model.test_dataloader()
|
|
if not isinstance(dataloaders, list):
|
|
dataloaders = [dataloaders]
|
|
|
|
for dataloader in dataloaders:
|
|
for batch in dataloader:
|
|
break
|
|
|
|
x, y = batch
|
|
x = x.view(x.size(0), -1)
|
|
|
|
# generate preds before saving model
|
|
model.eval()
|
|
pred_before_saving = model(x)
|
|
|
|
# save model
|
|
new_weights_path = os.path.join(tmpdir, 'save_test.ckpt')
|
|
trainer.save_checkpoint(new_weights_path)
|
|
|
|
# load new model
|
|
hparams_path = tutils.get_data_path(logger, path_dir=tmpdir)
|
|
hparams_path = os.path.join(hparams_path, 'hparams.yaml')
|
|
model_2 = EvalModelTemplate.load_from_checkpoint(
|
|
checkpoint_path=new_weights_path,
|
|
hparams_file=hparams_path
|
|
)
|
|
model_2.eval()
|
|
|
|
# make prediction
|
|
# assert that both predictions are the same
|
|
new_pred = model_2(x)
|
|
assert torch.all(torch.eq(pred_before_saving, new_pred)).item() == 1
|
|
|
|
|
|
def test_model_pickle(tmpdir):
|
|
model = EvalModelTemplate()
|
|
pickle.dumps(model)
|
|
cloudpickle.dumps(model)
|