lightning/tests/loggers/test_all.py

124 lines
3.6 KiB
Python

import inspect
import pickle
import pytest
import tests.base.utils as tutils
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import (
TensorBoardLogger, MLFlowLogger, NeptuneLogger, TestTubeLogger, CometLogger)
from tests.base import EvalModelTemplate
def _get_logger_args(logger_class, save_dir):
logger_args = {}
if 'save_dir' in inspect.getfullargspec(logger_class).args:
logger_args.update(save_dir=str(save_dir))
if 'offline_mode' in inspect.getfullargspec(logger_class).args:
logger_args.update(offline_mode=True)
return logger_args
@pytest.mark.parametrize("logger_class", [
TensorBoardLogger,
CometLogger,
MLFlowLogger,
NeptuneLogger,
TestTubeLogger,
# TrainsLogger, # TODO: add this one
# WandbLogger, # TODO: add this one
])
def test_loggers_fit_test(tmpdir, monkeypatch, logger_class):
"""Verify that basic functionality of all loggers."""
# prevent comet logger from trying to print at exit, since
# pytest's stdout/stderr redirection breaks it
import atexit
monkeypatch.setattr(atexit, 'register', lambda _: None)
model = EvalModelTemplate()
class StoreHistoryLogger(logger_class):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.history = []
def log_metrics(self, metrics, step):
super().log_metrics(metrics, step)
self.history.append((step, metrics))
logger_args = _get_logger_args(logger_class, tmpdir)
logger = StoreHistoryLogger(**logger_args)
trainer = Trainer(
max_epochs=1,
logger=logger,
train_percent_check=0.2,
val_percent_check=0.5,
fast_dev_run=True,
)
trainer.fit(model)
trainer.test()
log_metric_names = [(s, sorted(m.keys())) for s, m in logger.history]
assert log_metric_names == [(0, ['epoch', 'val_acc', 'val_loss']),
(0, ['epoch', 'train_some_val']),
(1, ['epoch', 'test_acc', 'test_loss'])]
@pytest.mark.parametrize("logger_class", [
TensorBoardLogger,
CometLogger,
MLFlowLogger,
NeptuneLogger,
TestTubeLogger,
# TrainsLogger, # TODO: add this one
# WandbLogger, # TODO: add this one
])
def test_loggers_pickle(tmpdir, monkeypatch, logger_class):
"""Verify that pickling trainer with logger works."""
# prevent comet logger from trying to print at exit, since
# pytest's stdout/stderr redirection breaks it
import atexit
monkeypatch.setattr(atexit, 'register', lambda _: None)
logger_args = _get_logger_args(logger_class, tmpdir)
logger = logger_class(**logger_args)
# test pickling loggers
pickle.dumps(logger)
trainer = Trainer(
max_epochs=1,
logger=logger
)
pkl_bytes = pickle.dumps(trainer)
trainer2 = pickle.loads(pkl_bytes)
trainer2.logger.log_metrics({'acc': 1.0})
@pytest.mark.parametrize("extra_params", [
pytest.param(dict(max_epochs=1, auto_scale_batch_size=True), id='Batch-size-Finder'),
pytest.param(dict(max_epochs=3, auto_lr_find=True), id='LR-Finder'),
])
def test_logger_reset_correctly(tmpdir, extra_params):
""" Test that the tuners do not alter the logger reference """
tutils.reset_seed()
model = EvalModelTemplate()
trainer = Trainer(
default_root_dir=tmpdir,
**extra_params
)
logger1 = trainer.logger
trainer.fit(model)
logger2 = trainer.logger
logger3 = model.logger
assert logger1 == logger2, \
'Finder altered the logger of trainer'
assert logger2 == logger3, \
'Finder altered the logger of model'