lightning/tests/core/test_decorators.py

34 lines
1.2 KiB
Python

import pytest
import torch
from tests.base import EvalModelTemplate
from pytorch_lightning.core.decorators import auto_move_data
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
@pytest.mark.parametrize(['src_device', 'dest_device'], [
pytest.param(torch.device('cpu'), torch.device('cpu')),
pytest.param(torch.device('cpu', 0), torch.device('cuda', 0)),
pytest.param(torch.device('cuda', 0), torch.device('cpu')),
pytest.param(torch.device('cuda', 0), torch.device('cuda', 0)),
])
def test_auto_move_data(src_device, dest_device):
""" Test that the decorator moves the data to the device the model is on. """
class CurrentModel(EvalModelTemplate):
pass
# apply the decorator
CurrentModel.forward = auto_move_data(CurrentModel.forward)
model = CurrentModel()
model = model.to(dest_device)
model.prepare_data()
loader = model.train_dataloader()
x, y, = next(iter(loader))
x = x.flatten(1)
# test that data on source device gets moved to destination device
x = x.to(src_device)
assert model(x).device == dest_device, "Automoving data to same device as model failed"