lightning/tests/callbacks/test_lr.py

103 lines
3.2 KiB
Python

import pytest
import tests.base.utils as tutils
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import LearningRateLogger
from tests.base import EvalModelTemplate
def test_lr_logger_single_lr(tmpdir):
""" Test that learning rates are extracted and logged for single lr scheduler. """
tutils.reset_seed()
model = EvalModelTemplate()
model.configure_optimizers = model.configure_optimizers__single_scheduler
lr_logger = LearningRateLogger()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=2,
val_percent_check=0.1,
train_percent_check=0.5,
callbacks=[lr_logger]
)
result = trainer.fit(model)
assert result
assert lr_logger.lrs, 'No learning rates logged'
assert len(lr_logger.lrs) == len(trainer.lr_schedulers), \
'Number of learning rates logged does not match number of lr schedulers'
assert all([k in ['lr-Adam'] for k in lr_logger.lrs.keys()]), \
'Names of learning rates not set correctly'
def test_lr_logger_no_lr(tmpdir):
tutils.reset_seed()
model = EvalModelTemplate()
lr_logger = LearningRateLogger()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=2,
val_percent_check=0.1,
train_percent_check=0.5,
callbacks=[lr_logger]
)
with pytest.warns(RuntimeWarning):
result = trainer.fit(model)
assert result
def test_lr_logger_multi_lrs(tmpdir):
""" Test that learning rates are extracted and logged for multi lr schedulers. """
tutils.reset_seed()
model = EvalModelTemplate()
model.configure_optimizers = model.configure_optimizers__multiple_schedulers
lr_logger = LearningRateLogger()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=2,
val_percent_check=0.1,
train_percent_check=0.5,
callbacks=[lr_logger]
)
result = trainer.fit(model)
assert result
assert lr_logger.lrs, 'No learning rates logged'
assert len(lr_logger.lrs) == len(trainer.lr_schedulers), \
'Number of learning rates logged does not match number of lr schedulers'
assert all([k in ['lr-Adam', 'lr-Adam-1'] for k in lr_logger.lrs.keys()]), \
'Names of learning rates not set correctly'
assert all(len(lr) == trainer.max_epochs for k, lr in lr_logger.lrs.items()), \
'Length of logged learning rates exceeds the number of epochs'
def test_lr_logger_param_groups(tmpdir):
""" Test that learning rates are extracted and logged for single lr scheduler. """
tutils.reset_seed()
model = EvalModelTemplate()
model.configure_optimizers = model.configure_optimizers__param_groups
lr_logger = LearningRateLogger()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=2,
val_percent_check=0.1,
train_percent_check=0.5,
callbacks=[lr_logger]
)
result = trainer.fit(model)
assert result
assert lr_logger.lrs, 'No learning rates logged'
assert len(lr_logger.lrs) == 2 * len(trainer.lr_schedulers), \
'Number of learning rates logged does not match number of param groups'
assert all([k in ['lr-Adam/pg1', 'lr-Adam/pg2'] for k in lr_logger.lrs.keys()]), \
'Names of learning rates not set correctly'