lightning/tests/tests_pytorch/models/test_torchscript.py

208 lines
7.3 KiB
Python

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import fsspec
import pytest
import torch
from fsspec.implementations.local import LocalFileSystem
from lightning.fabric.utilities.cloud_io import get_filesystem
from lightning.fabric.utilities.imports import _IS_WINDOWS, _TORCH_GREATER_EQUAL_2_4
from lightning.pytorch.core.module import LightningModule
from lightning.pytorch.demos.boring_classes import BoringModel
from tests_pytorch.helpers.advanced_models import BasicGAN, ParityModuleRNN
from tests_pytorch.helpers.runif import RunIf
@pytest.mark.skipif(_IS_WINDOWS and _TORCH_GREATER_EQUAL_2_4, reason="not close on Windows + PyTorch 2.4")
@pytest.mark.parametrize("modelclass", [BoringModel, ParityModuleRNN, BasicGAN])
def test_torchscript_input_output(modelclass):
"""Test that scripted LightningModule forward works."""
model = modelclass()
if isinstance(model, BoringModel):
model.example_input_array = torch.randn(5, 32)
script = model.to_torchscript()
assert isinstance(script, torch.jit.ScriptModule)
model.eval()
with torch.no_grad():
model_output = model(model.example_input_array)
script_output = script(model.example_input_array)
assert torch.allclose(script_output, model_output)
@pytest.mark.skipif(_IS_WINDOWS and _TORCH_GREATER_EQUAL_2_4, reason="not close on Windows + PyTorch 2.4")
@pytest.mark.parametrize("modelclass", [BoringModel, ParityModuleRNN, BasicGAN])
def test_torchscript_example_input_output_trace(modelclass):
"""Test that traced LightningModule forward works with example_input_array."""
torch.manual_seed(1)
model = modelclass()
if isinstance(model, BoringModel):
model.example_input_array = torch.randn(5, 32)
script = model.to_torchscript(method="trace")
assert isinstance(script, torch.jit.ScriptModule)
model.eval()
with torch.no_grad():
model_output = model(model.example_input_array)
script_output = script(model.example_input_array)
assert torch.allclose(script_output, model_output)
def test_torchscript_input_output_trace():
"""Test that traced LightningModule forward works with example_inputs."""
model = BoringModel()
example_inputs = torch.randn(1, 32)
script = model.to_torchscript(example_inputs=example_inputs, method="trace")
assert isinstance(script, torch.jit.ScriptModule)
model.eval()
with torch.no_grad():
model_output = model(example_inputs)
script_output = script(example_inputs)
assert torch.allclose(script_output, model_output)
@pytest.mark.parametrize(
"device_str",
[
"cpu",
pytest.param("cuda:0", marks=RunIf(min_cuda_gpus=1)),
pytest.param("mps:0", marks=RunIf(mps=True)),
],
)
def test_torchscript_device(device_str):
"""Test that scripted module is on the correct device."""
device = torch.device(device_str)
model = BoringModel().to(device)
model.example_input_array = torch.randn(5, 32)
script = model.to_torchscript()
assert next(script.parameters()).device == device
script_output = script(model.example_input_array.to(device))
assert script_output.device == device
def test_torchscript_retain_training_state():
"""Test that torchscript export does not alter the training mode of original model."""
model = BoringModel()
model.train(True)
script = model.to_torchscript()
assert model.training
assert not script.training
model.train(False)
_ = model.to_torchscript()
assert not model.training
assert not script.training
@pytest.mark.parametrize("modelclass", [BoringModel, ParityModuleRNN, BasicGAN])
def test_torchscript_properties(modelclass):
"""Test that scripted LightningModule has unnecessary methods removed."""
model = modelclass()
script = model.to_torchscript()
assert not hasattr(model, "batch_size") or hasattr(script, "batch_size")
assert not hasattr(model, "learning_rate") or hasattr(script, "learning_rate")
assert not callable(getattr(script, "training_step", None))
@pytest.mark.parametrize("modelclass", [BoringModel, ParityModuleRNN, BasicGAN])
def test_torchscript_save_load(tmp_path, modelclass):
"""Test that scripted LightningModule is correctly saved and can be loaded."""
model = modelclass()
output_file = str(tmp_path / "model.pt")
script = model.to_torchscript(file_path=output_file)
loaded_script = torch.jit.load(output_file)
assert torch.allclose(next(script.parameters()), next(loaded_script.parameters()))
@pytest.mark.parametrize("modelclass", [BoringModel, ParityModuleRNN, BasicGAN])
def test_torchscript_save_load_custom_filesystem(tmp_path, modelclass):
"""Test that scripted LightningModule is correctly saved and can be loaded with custom filesystems."""
_DUMMY_PRFEIX = "dummy"
_PREFIX_SEPARATOR = "://"
class DummyFileSystem(LocalFileSystem): ...
fsspec.register_implementation(_DUMMY_PRFEIX, DummyFileSystem, clobber=True)
model = modelclass()
output_file = os.path.join(_DUMMY_PRFEIX, _PREFIX_SEPARATOR, tmp_path, "model.pt")
script = model.to_torchscript(file_path=output_file)
fs = get_filesystem(output_file)
with fs.open(output_file, "rb") as f:
loaded_script = torch.jit.load(f)
assert torch.allclose(next(script.parameters()), next(loaded_script.parameters()))
def test_torchcript_invalid_method():
"""Test that an error is thrown with invalid torchscript method."""
model = BoringModel()
model.train(True)
with pytest.raises(ValueError, match="only supports 'script' or 'trace'"):
model.to_torchscript(method="temp")
def test_torchscript_with_no_input():
"""Test that an error is thrown when there is no input tensor."""
model = BoringModel()
model.example_input_array = None
with pytest.raises(ValueError, match="requires either `example_inputs` or `model.example_input_array`"):
model.to_torchscript(method="trace")
def test_torchscript_script_recursively():
class GrandChild(LightningModule):
def __init__(self):
super().__init__()
self.model = torch.nn.Linear(1, 1)
def forward(self, inputs):
return self.model(inputs)
class Child(LightningModule):
def __init__(self):
super().__init__()
self.model = torch.nn.Sequential(GrandChild(), GrandChild())
def forward(self, inputs):
return self.model(inputs)
class Parent(LightningModule):
def __init__(self):
super().__init__()
self.model = Child()
def forward(self, inputs):
return self.model(inputs)
lm = Parent()
assert not lm._jit_is_scripting
script = lm.to_torchscript(method="script")
assert not lm._jit_is_scripting
assert isinstance(script, torch.jit.RecursiveScriptModule)