# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import fsspec import pytest import torch from fsspec.implementations.local import LocalFileSystem from lightning.fabric.utilities.cloud_io import get_filesystem from lightning.fabric.utilities.imports import _IS_WINDOWS, _TORCH_GREATER_EQUAL_2_4 from lightning.pytorch.core.module import LightningModule from lightning.pytorch.demos.boring_classes import BoringModel from tests_pytorch.helpers.advanced_models import BasicGAN, ParityModuleRNN from tests_pytorch.helpers.runif import RunIf @pytest.mark.skipif(_IS_WINDOWS and _TORCH_GREATER_EQUAL_2_4, reason="not close on Windows + PyTorch 2.4") @pytest.mark.parametrize("modelclass", [BoringModel, ParityModuleRNN, BasicGAN]) def test_torchscript_input_output(modelclass): """Test that scripted LightningModule forward works.""" model = modelclass() if isinstance(model, BoringModel): model.example_input_array = torch.randn(5, 32) script = model.to_torchscript() assert isinstance(script, torch.jit.ScriptModule) model.eval() with torch.no_grad(): model_output = model(model.example_input_array) script_output = script(model.example_input_array) assert torch.allclose(script_output, model_output) @pytest.mark.skipif(_IS_WINDOWS and _TORCH_GREATER_EQUAL_2_4, reason="not close on Windows + PyTorch 2.4") @pytest.mark.parametrize("modelclass", [BoringModel, ParityModuleRNN, BasicGAN]) def test_torchscript_example_input_output_trace(modelclass): """Test that traced LightningModule forward works with example_input_array.""" torch.manual_seed(1) model = modelclass() if isinstance(model, BoringModel): model.example_input_array = torch.randn(5, 32) script = model.to_torchscript(method="trace") assert isinstance(script, torch.jit.ScriptModule) model.eval() with torch.no_grad(): model_output = model(model.example_input_array) script_output = script(model.example_input_array) assert torch.allclose(script_output, model_output) def test_torchscript_input_output_trace(): """Test that traced LightningModule forward works with example_inputs.""" model = BoringModel() example_inputs = torch.randn(1, 32) script = model.to_torchscript(example_inputs=example_inputs, method="trace") assert isinstance(script, torch.jit.ScriptModule) model.eval() with torch.no_grad(): model_output = model(example_inputs) script_output = script(example_inputs) assert torch.allclose(script_output, model_output) @pytest.mark.parametrize( "device_str", [ "cpu", pytest.param("cuda:0", marks=RunIf(min_cuda_gpus=1)), pytest.param("mps:0", marks=RunIf(mps=True)), ], ) def test_torchscript_device(device_str): """Test that scripted module is on the correct device.""" device = torch.device(device_str) model = BoringModel().to(device) model.example_input_array = torch.randn(5, 32) script = model.to_torchscript() assert next(script.parameters()).device == device script_output = script(model.example_input_array.to(device)) assert script_output.device == device def test_torchscript_retain_training_state(): """Test that torchscript export does not alter the training mode of original model.""" model = BoringModel() model.train(True) script = model.to_torchscript() assert model.training assert not script.training model.train(False) _ = model.to_torchscript() assert not model.training assert not script.training @pytest.mark.parametrize("modelclass", [BoringModel, ParityModuleRNN, BasicGAN]) def test_torchscript_properties(modelclass): """Test that scripted LightningModule has unnecessary methods removed.""" model = modelclass() script = model.to_torchscript() assert not hasattr(model, "batch_size") or hasattr(script, "batch_size") assert not hasattr(model, "learning_rate") or hasattr(script, "learning_rate") assert not callable(getattr(script, "training_step", None)) @pytest.mark.parametrize("modelclass", [BoringModel, ParityModuleRNN, BasicGAN]) def test_torchscript_save_load(tmp_path, modelclass): """Test that scripted LightningModule is correctly saved and can be loaded.""" model = modelclass() output_file = str(tmp_path / "model.pt") script = model.to_torchscript(file_path=output_file) loaded_script = torch.jit.load(output_file) assert torch.allclose(next(script.parameters()), next(loaded_script.parameters())) @pytest.mark.parametrize("modelclass", [BoringModel, ParityModuleRNN, BasicGAN]) def test_torchscript_save_load_custom_filesystem(tmp_path, modelclass): """Test that scripted LightningModule is correctly saved and can be loaded with custom filesystems.""" _DUMMY_PRFEIX = "dummy" _PREFIX_SEPARATOR = "://" class DummyFileSystem(LocalFileSystem): ... fsspec.register_implementation(_DUMMY_PRFEIX, DummyFileSystem, clobber=True) model = modelclass() output_file = os.path.join(_DUMMY_PRFEIX, _PREFIX_SEPARATOR, tmp_path, "model.pt") script = model.to_torchscript(file_path=output_file) fs = get_filesystem(output_file) with fs.open(output_file, "rb") as f: loaded_script = torch.jit.load(f) assert torch.allclose(next(script.parameters()), next(loaded_script.parameters())) def test_torchcript_invalid_method(): """Test that an error is thrown with invalid torchscript method.""" model = BoringModel() model.train(True) with pytest.raises(ValueError, match="only supports 'script' or 'trace'"): model.to_torchscript(method="temp") def test_torchscript_with_no_input(): """Test that an error is thrown when there is no input tensor.""" model = BoringModel() model.example_input_array = None with pytest.raises(ValueError, match="requires either `example_inputs` or `model.example_input_array`"): model.to_torchscript(method="trace") def test_torchscript_script_recursively(): class GrandChild(LightningModule): def __init__(self): super().__init__() self.model = torch.nn.Linear(1, 1) def forward(self, inputs): return self.model(inputs) class Child(LightningModule): def __init__(self): super().__init__() self.model = torch.nn.Sequential(GrandChild(), GrandChild()) def forward(self, inputs): return self.model(inputs) class Parent(LightningModule): def __init__(self): super().__init__() self.model = Child() def forward(self, inputs): return self.model(inputs) lm = Parent() assert not lm._jit_is_scripting script = lm.to_torchscript(method="script") assert not lm._jit_is_scripting assert isinstance(script, torch.jit.RecursiveScriptModule)