lightning/pytorch_lightning/metrics/functional/regression.py

41 lines
1.3 KiB
Python

import torch
from torch.nn import functional as F
from pytorch_lightning.metrics.functional.reduction import reduce
def psnr(
pred: torch.Tensor,
target: torch.Tensor,
data_range: float = None,
base: float = 10.0,
reduction: str = 'elementwise_mean'
) -> torch.Tensor:
"""
Computes the peak signal-to-noise ratio metric
Args:
pred: estimated signal
target: groun truth signal
data_range: the range of the data. If None, it is determined from the data (max - min).
base: a base of a logarithm to use (default: 10)
reduction: method for reducing psnr (default: takes the mean)
Example:
>>> from pytorch_lightning.metrics.regression import PSNR
>>> pred = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
>>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]])
>>> metric = PSNR()
>>> metric(pred, target)
tensor(2.5527)
"""
if data_range is None:
data_range = max(target.max() - target.min(), pred.max() - pred.min())
else:
data_range = torch.tensor(float(data_range))
mse = F.mse_loss(pred.view(-1), target.view(-1), reduction=reduction)
psnr_base_e = 2 * torch.log(data_range) - torch.log(mse)
return psnr_base_e * (10 / torch.log(torch.tensor(base)))