import torch from torch.nn import functional as F from pytorch_lightning.metrics.functional.reduction import reduce def psnr( pred: torch.Tensor, target: torch.Tensor, data_range: float = None, base: float = 10.0, reduction: str = 'elementwise_mean' ) -> torch.Tensor: """ Computes the peak signal-to-noise ratio metric Args: pred: estimated signal target: groun truth signal data_range: the range of the data. If None, it is determined from the data (max - min). base: a base of a logarithm to use (default: 10) reduction: method for reducing psnr (default: takes the mean) Example: >>> from pytorch_lightning.metrics.regression import PSNR >>> pred = torch.tensor([[0.0, 1.0], [2.0, 3.0]]) >>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]]) >>> metric = PSNR() >>> metric(pred, target) tensor(2.5527) """ if data_range is None: data_range = max(target.max() - target.min(), pred.max() - pred.min()) else: data_range = torch.tensor(float(data_range)) mse = F.mse_loss(pred.view(-1), target.view(-1), reduction=reduction) psnr_base_e = 2 * torch.log(data_range) - torch.log(mse) return psnr_base_e * (10 / torch.log(torch.tensor(base)))