832 lines
31 KiB
Python
832 lines
31 KiB
Python
import json
|
|
import os
|
|
from typing import Any, Dict
|
|
from unittest import mock
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn, Tensor
|
|
from torch.optim import Optimizer
|
|
from torch.utils.data import DataLoader
|
|
from torchmetrics import Accuracy
|
|
|
|
from pytorch_lightning import LightningModule, seed_everything, Trainer
|
|
from pytorch_lightning.callbacks import Callback, LearningRateMonitor, ModelCheckpoint
|
|
from pytorch_lightning.plugins import DeepSpeedPlugin, DeepSpeedPrecisionPlugin
|
|
from pytorch_lightning.plugins.training_type.deepspeed import LightningDeepSpeedModule
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from pytorch_lightning.utilities.imports import _DEEPSPEED_AVAILABLE
|
|
from tests.helpers.boring_model import BoringModel, RandomDataset, RandomIterableDataset
|
|
from tests.helpers.datamodules import ClassifDataModule
|
|
from tests.helpers.runif import RunIf
|
|
|
|
if _DEEPSPEED_AVAILABLE:
|
|
from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict
|
|
|
|
|
|
class ModelParallelBoringModel(BoringModel):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.layer = None
|
|
|
|
def configure_sharded_model(self) -> None:
|
|
self.layer = torch.nn.Linear(32, 2)
|
|
|
|
def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
|
|
self.configure_sharded_model()
|
|
|
|
|
|
class ModelParallelBoringModelNoSchedulers(ModelParallelBoringModel):
|
|
def configure_optimizers(self):
|
|
return torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
|
|
|
|
class ModelParallelBoringModelManualOptim(BoringModel):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.layer = None
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
opt = self.optimizers()
|
|
output = self(batch)
|
|
loss = self.loss(batch, output)
|
|
opt.zero_grad()
|
|
self.manual_backward(loss)
|
|
opt.step()
|
|
|
|
def configure_sharded_model(self) -> None:
|
|
self.layer = torch.nn.Linear(32, 2)
|
|
|
|
def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
|
|
self.configure_sharded_model()
|
|
|
|
@property
|
|
def automatic_optimization(self) -> bool:
|
|
return False
|
|
|
|
|
|
def test_deepspeed_lightning_module(tmpdir):
|
|
"""
|
|
Test to ensure that a model wrapped in `LightningDeepSpeedModule` moves types and device correctly.
|
|
"""
|
|
|
|
model = BoringModel()
|
|
module = LightningDeepSpeedModule(model, precision=16)
|
|
|
|
module.half()
|
|
assert module.dtype == torch.half
|
|
assert model.dtype == torch.half
|
|
|
|
module.to(torch.double)
|
|
assert module.dtype == torch.double
|
|
assert model.dtype == torch.double
|
|
|
|
|
|
@RunIf(min_gpus=1)
|
|
def test_deepspeed_lightning_module_precision(tmpdir):
|
|
"""
|
|
Test to ensure that a model wrapped in `LightningDeepSpeedModule` moves tensors to half when precision 16.
|
|
"""
|
|
|
|
model = BoringModel()
|
|
module = LightningDeepSpeedModule(model, precision=16)
|
|
|
|
module.cuda().half()
|
|
assert module.dtype == torch.half
|
|
assert model.dtype == torch.half
|
|
|
|
x = torch.randn((1, 32), dtype=torch.float).cuda()
|
|
out = module(x)
|
|
|
|
assert out.dtype == torch.half
|
|
|
|
module.to(torch.double)
|
|
assert module.dtype == torch.double
|
|
assert model.dtype == torch.double
|
|
|
|
|
|
@pytest.fixture
|
|
def deepspeed_config():
|
|
return {
|
|
"optimizer": {"type": "SGD", "params": {"lr": 3e-5}},
|
|
"scheduler": {
|
|
"type": "WarmupLR",
|
|
"params": {"last_batch_iteration": -1, "warmup_min_lr": 0, "warmup_max_lr": 3e-5, "warmup_num_steps": 100},
|
|
},
|
|
}
|
|
|
|
|
|
@pytest.fixture
|
|
def deepspeed_zero_config(deepspeed_config):
|
|
return {**deepspeed_config, "zero_allow_untested_optimizer": True, "zero_optimization": {"stage": 2}}
|
|
|
|
|
|
@RunIf(deepspeed=True)
|
|
@pytest.mark.parametrize("input", ("deepspeed", DeepSpeedPlugin))
|
|
def test_deepspeed_plugin_string(tmpdir, input):
|
|
"""
|
|
Test to ensure that the plugin can be passed via string or instance, and parallel devices is correctly set.
|
|
"""
|
|
|
|
trainer = Trainer(fast_dev_run=True, default_root_dir=tmpdir, plugins=input if isinstance(input, str) else input())
|
|
|
|
assert isinstance(trainer.accelerator.training_type_plugin, DeepSpeedPlugin)
|
|
assert trainer.accelerator.training_type_plugin.parallel_devices == [torch.device("cpu")]
|
|
|
|
|
|
@RunIf(deepspeed=True)
|
|
def test_deepspeed_plugin_env(tmpdir, monkeypatch, deepspeed_config):
|
|
"""
|
|
Test to ensure that the plugin can be passed via a string with an environment variable.
|
|
"""
|
|
config_path = os.path.join(tmpdir, "temp.json")
|
|
with open(config_path, "w") as f:
|
|
f.write(json.dumps(deepspeed_config))
|
|
monkeypatch.setenv("PL_DEEPSPEED_CONFIG_PATH", config_path)
|
|
|
|
trainer = Trainer(fast_dev_run=True, default_root_dir=tmpdir, plugins="deepspeed")
|
|
|
|
plugin = trainer.accelerator.training_type_plugin
|
|
assert isinstance(plugin, DeepSpeedPlugin)
|
|
assert plugin.parallel_devices == [torch.device("cpu")]
|
|
assert plugin.config == deepspeed_config
|
|
|
|
|
|
@RunIf(amp_native=True, deepspeed=True)
|
|
@pytest.mark.parametrize("precision", [16, "mixed"])
|
|
@pytest.mark.parametrize(
|
|
"amp_backend",
|
|
[pytest.param("native", marks=RunIf(amp_native=True)), pytest.param("apex", marks=RunIf(amp_apex=True))],
|
|
)
|
|
def test_deepspeed_precision_choice(amp_backend, precision, tmpdir):
|
|
"""
|
|
Test to ensure precision plugin is also correctly chosen.
|
|
DeepSpeed handles precision via Custom DeepSpeedPrecisionPlugin
|
|
"""
|
|
|
|
trainer = Trainer(
|
|
fast_dev_run=True, default_root_dir=tmpdir, plugins="deepspeed", amp_backend=amp_backend, precision=precision
|
|
)
|
|
|
|
assert isinstance(trainer.accelerator.training_type_plugin, DeepSpeedPlugin)
|
|
assert isinstance(trainer.accelerator.precision_plugin, DeepSpeedPrecisionPlugin)
|
|
assert trainer.accelerator.precision_plugin.precision == precision
|
|
|
|
|
|
@RunIf(deepspeed=True)
|
|
def test_deepspeed_with_invalid_config_path(tmpdir):
|
|
"""
|
|
Test to ensure if we pass an invalid config path we throw an exception.
|
|
"""
|
|
|
|
with pytest.raises(
|
|
MisconfigurationException, match="You passed in a path to a DeepSpeed config but the path does not exist"
|
|
):
|
|
DeepSpeedPlugin(config="invalid_path.json")
|
|
|
|
|
|
@RunIf(deepspeed=True)
|
|
def test_deepspeed_with_env_path(tmpdir, monkeypatch, deepspeed_config):
|
|
"""
|
|
Test to ensure if we pass an env variable, we load the config from the path.
|
|
"""
|
|
config_path = os.path.join(tmpdir, "temp.json")
|
|
with open(config_path, "w") as f:
|
|
f.write(json.dumps(deepspeed_config))
|
|
monkeypatch.setenv("PL_DEEPSPEED_CONFIG_PATH", config_path)
|
|
plugin = DeepSpeedPlugin()
|
|
assert plugin.config == deepspeed_config
|
|
|
|
|
|
@RunIf(deepspeed=True)
|
|
def test_deepspeed_defaults(tmpdir):
|
|
"""
|
|
Ensure that defaults are correctly set as a config for DeepSpeed if no arguments are passed.
|
|
"""
|
|
plugin = DeepSpeedPlugin()
|
|
assert plugin.config is not None
|
|
assert isinstance(plugin.config["zero_optimization"], dict)
|
|
|
|
|
|
@RunIf(min_gpus=1, deepspeed=True, special=True)
|
|
def test_warn_deepspeed_override_backward(tmpdir):
|
|
"""Test to ensure that if the backward hook in the LightningModule is overridden, we throw a warning."""
|
|
|
|
class TestModel(BoringModel):
|
|
def backward(self, loss: Tensor, optimizer: Optimizer, optimizer_idx: int, *args, **kwargs) -> None:
|
|
return loss.backward()
|
|
|
|
model = TestModel()
|
|
trainer = Trainer(fast_dev_run=True, default_root_dir=tmpdir, plugins=DeepSpeedPlugin(), gpus=1, precision=16)
|
|
with pytest.warns(UserWarning, match="will be ignored since DeepSpeed handles the backward"):
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(min_gpus=1, deepspeed=True, special=True)
|
|
@pytest.mark.parametrize(
|
|
["dataset_cls", "value"],
|
|
[(RandomDataset, "auto"), (RandomDataset, 10), (RandomIterableDataset, "auto"), (RandomIterableDataset, 10)],
|
|
)
|
|
def test_deepspeed_auto_batch_size_config_select(tmpdir, dataset_cls, value):
|
|
"""Test to ensure that the batch size is correctly set as expected for deepspeed logging purposes."""
|
|
|
|
class TestModel(BoringModel):
|
|
def train_dataloader(self):
|
|
return DataLoader(dataset_cls(32, 64))
|
|
|
|
class AssertCallback(Callback):
|
|
def on_train_start(self, trainer, pl_module) -> None:
|
|
assert isinstance(trainer.accelerator.training_type_plugin, DeepSpeedPlugin)
|
|
config = trainer.accelerator.training_type_plugin.config
|
|
|
|
# int value overrides auto mode
|
|
expected_value = value if isinstance(value, int) else 1
|
|
if dataset_cls == RandomDataset:
|
|
expected_value = pl_module.train_dataloader().batch_size if value == "auto" else value
|
|
|
|
assert config["train_micro_batch_size_per_gpu"] == expected_value
|
|
raise SystemExit
|
|
|
|
ck = AssertCallback()
|
|
model = TestModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
fast_dev_run=True,
|
|
callbacks=ck,
|
|
gpus=1,
|
|
plugins=DeepSpeedPlugin(logging_batch_size_per_gpu=value, zero_optimization=False),
|
|
)
|
|
with pytest.raises(SystemExit):
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(min_gpus=1, deepspeed=True, special=True)
|
|
def test_deepspeed_run_configure_optimizers(tmpdir):
|
|
"""
|
|
Test end to end that deepspeed works with defaults (without ZeRO as that requires compilation),
|
|
whilst using configure_optimizers for optimizers and schedulers.
|
|
"""
|
|
|
|
class TestCB(Callback):
|
|
def on_train_start(self, trainer, pl_module) -> None:
|
|
from deepspeed.runtime.zero.stage2 import FP16_DeepSpeedZeroOptimizer
|
|
|
|
assert isinstance(trainer.optimizers[0], FP16_DeepSpeedZeroOptimizer)
|
|
assert isinstance(trainer.optimizers[0].optimizer, torch.optim.SGD)
|
|
assert isinstance(trainer.lr_schedulers[0]["scheduler"], torch.optim.lr_scheduler.StepLR)
|
|
# check that the lr_scheduler config was preserved
|
|
assert trainer.lr_schedulers[0]["name"] == "Sean"
|
|
# Ensure DeepSpeed engine has initialized with our lr_scheduler
|
|
assert isinstance(trainer.model.lr_scheduler, torch.optim.lr_scheduler.StepLR)
|
|
|
|
class TestModel(BoringModel):
|
|
def configure_optimizers(self):
|
|
[optimizer], [scheduler] = super().configure_optimizers()
|
|
return {"optimizer": optimizer, "lr_scheduler": {"scheduler": scheduler, "name": "Sean"}}
|
|
|
|
model = TestModel()
|
|
lr_monitor = LearningRateMonitor()
|
|
trainer = Trainer(
|
|
plugins=DeepSpeedPlugin(), # disable ZeRO so our optimizers are not wrapped
|
|
default_root_dir=tmpdir,
|
|
gpus=1,
|
|
fast_dev_run=True,
|
|
precision=16,
|
|
callbacks=[TestCB(), lr_monitor],
|
|
)
|
|
trainer.fit(model)
|
|
|
|
assert lr_monitor.lrs == {"Sean": [0.1]}
|
|
|
|
_assert_save_model_is_equal(model, tmpdir, trainer)
|
|
|
|
|
|
@RunIf(min_gpus=1, deepspeed=True, special=True)
|
|
def test_deepspeed_config(tmpdir, deepspeed_zero_config):
|
|
"""
|
|
Test to ensure deepspeed works correctly when passed a DeepSpeed config object including optimizers/schedulers
|
|
and saves the model weights to load correctly.
|
|
"""
|
|
|
|
class TestCB(Callback):
|
|
def on_train_start(self, trainer, pl_module) -> None:
|
|
from deepspeed.runtime.lr_schedules import WarmupLR
|
|
from deepspeed.runtime.zero.stage2 import FP16_DeepSpeedZeroOptimizer
|
|
|
|
assert isinstance(trainer.optimizers[0], FP16_DeepSpeedZeroOptimizer)
|
|
assert isinstance(trainer.optimizers[0].optimizer, torch.optim.SGD)
|
|
assert isinstance(trainer.lr_schedulers[0]["scheduler"], WarmupLR)
|
|
# Ensure DeepSpeed engine has initialized with our lr_scheduler
|
|
assert isinstance(trainer.model.lr_scheduler, WarmupLR)
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
plugins=[DeepSpeedPlugin(config=deepspeed_zero_config)],
|
|
default_root_dir=tmpdir,
|
|
gpus=1,
|
|
fast_dev_run=True,
|
|
precision=16,
|
|
callbacks=[TestCB()],
|
|
)
|
|
|
|
trainer.fit(model)
|
|
trainer.test(model)
|
|
|
|
|
|
@RunIf(min_gpus=1, deepspeed=True, special=True)
|
|
def test_deepspeed_custom_precision_params(tmpdir):
|
|
"""Ensure if we modify the FP16 parameters via the DeepSpeedPlugin, the deepspeed config contains these changes."""
|
|
|
|
class TestCB(Callback):
|
|
def on_train_start(self, trainer, pl_module) -> None:
|
|
assert trainer.training_type_plugin.config["fp16"]["loss_scale"] == 10
|
|
assert trainer.training_type_plugin.config["fp16"]["initial_scale_power"] == 10
|
|
assert trainer.training_type_plugin.config["fp16"]["loss_scale_window"] == 10
|
|
assert trainer.training_type_plugin.config["fp16"]["hysteresis"] == 10
|
|
assert trainer.training_type_plugin.config["fp16"]["min_loss_scale"] == 10
|
|
raise SystemExit()
|
|
|
|
model = BoringModel()
|
|
ds = DeepSpeedPlugin(loss_scale=10, initial_scale_power=10, loss_scale_window=10, hysteresis=10, min_loss_scale=10)
|
|
trainer = Trainer(default_root_dir=tmpdir, plugins=[ds], precision=16, gpus=1, callbacks=[TestCB()])
|
|
with pytest.raises(SystemExit):
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(deepspeed=True)
|
|
def test_deepspeed_custom_activation_checkpointing_params(tmpdir):
|
|
"""Ensure if we modify the activation checkpointing parameters, the deepspeed config contains these changes."""
|
|
ds = DeepSpeedPlugin(
|
|
partition_activations=True,
|
|
cpu_checkpointing=True,
|
|
contiguous_memory_optimization=True,
|
|
synchronize_checkpoint_boundary=True,
|
|
)
|
|
checkpoint_config = ds.config["activation_checkpointing"]
|
|
assert checkpoint_config["partition_activations"]
|
|
assert checkpoint_config["cpu_checkpointing"]
|
|
assert checkpoint_config["contiguous_memory_optimization"]
|
|
assert checkpoint_config["synchronize_checkpoint_boundary"]
|
|
|
|
|
|
@RunIf(min_gpus=1, deepspeed=True)
|
|
def test_deepspeed_assert_config_zero_offload_disabled(tmpdir, deepspeed_zero_config):
|
|
"""Ensure if we use a config and turn off cpu_offload, that this is set to False within the config."""
|
|
|
|
deepspeed_zero_config["zero_optimization"]["cpu_offload"] = False
|
|
|
|
class TestCallback(Callback):
|
|
def on_before_accelerator_backend_setup(self, trainer, pl_module) -> None:
|
|
assert trainer.training_type_plugin.config["zero_optimization"]["cpu_offload"] is False
|
|
raise SystemExit()
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
plugins=[DeepSpeedPlugin(config=deepspeed_zero_config)],
|
|
precision=16,
|
|
gpus=1,
|
|
callbacks=[TestCallback()],
|
|
)
|
|
with pytest.raises(SystemExit):
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(min_gpus=2, deepspeed=True, special=True)
|
|
def test_deepspeed_multigpu(tmpdir):
|
|
"""
|
|
Test to ensure that DeepSpeed with multiple GPUs works.
|
|
"""
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir, plugins=[DeepSpeedPlugin(stage=3)], gpus=2, fast_dev_run=True, precision=16
|
|
)
|
|
trainer.fit(model)
|
|
trainer.test(model)
|
|
|
|
_assert_save_model_is_equal(model, tmpdir, trainer)
|
|
|
|
|
|
@RunIf(min_gpus=1, deepspeed=True, special=True)
|
|
def test_deepspeed_fp32_works(tmpdir):
|
|
model = BoringModel()
|
|
trainer = Trainer(default_root_dir=tmpdir, gpus=1, plugins="deepspeed_stage_3", fast_dev_run=True)
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(min_gpus=2, deepspeed=True, special=True)
|
|
def test_deepspeed_stage_3_save_warning(tmpdir):
|
|
"""
|
|
Test to ensure that DeepSpeed Stage 3 gives a warning when saving.
|
|
"""
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir, plugins=[DeepSpeedPlugin(stage=3)], gpus=2, fast_dev_run=True, precision=16
|
|
)
|
|
trainer.fit(model)
|
|
checkpoint_path = os.path.join(tmpdir, "model.pt")
|
|
with pytest.warns(UserWarning, match="each worker will save a shard of the checkpoint within a directory."):
|
|
trainer.save_checkpoint(checkpoint_path)
|
|
|
|
|
|
@RunIf(min_gpus=1, deepspeed=True, special=True)
|
|
def test_deepspeed_multigpu_single_file(tmpdir):
|
|
"""
|
|
Test to ensure that DeepSpeed loads from a single file checkpoint.
|
|
"""
|
|
model = BoringModel()
|
|
checkpoint_path = os.path.join(tmpdir, "model.pt")
|
|
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True)
|
|
trainer.fit(model)
|
|
trainer.save_checkpoint(checkpoint_path)
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir, plugins=[DeepSpeedPlugin(stage=3)], gpus=1, fast_dev_run=True, precision=16
|
|
)
|
|
plugin = trainer.training_type_plugin
|
|
assert isinstance(plugin, DeepSpeedPlugin)
|
|
assert not plugin.load_full_weights
|
|
with pytest.raises(MisconfigurationException, match="DeepSpeed was unable to load the checkpoint."):
|
|
trainer.test(model, ckpt_path=checkpoint_path)
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
plugins=[DeepSpeedPlugin(stage=3, load_full_weights=True)],
|
|
gpus=1,
|
|
fast_dev_run=True,
|
|
precision=16,
|
|
)
|
|
plugin = trainer.training_type_plugin
|
|
assert isinstance(plugin, DeepSpeedPlugin)
|
|
assert plugin.load_full_weights
|
|
trainer.test(model, ckpt_path=checkpoint_path)
|
|
|
|
|
|
class ModelParallelClassificationModel(LightningModule):
|
|
def __init__(self, lr: float = 0.01, num_blocks: int = 5):
|
|
super().__init__()
|
|
self.lr = lr
|
|
self.num_blocks = num_blocks
|
|
|
|
self.train_acc = Accuracy()
|
|
self.valid_acc = Accuracy()
|
|
self.test_acc = Accuracy()
|
|
|
|
def make_block(self):
|
|
return nn.Sequential(nn.Linear(32, 32, bias=False), nn.ReLU())
|
|
|
|
def configure_sharded_model(self) -> None:
|
|
self.model = nn.Sequential(*(self.make_block() for x in range(self.num_blocks)), nn.Linear(32, 3))
|
|
|
|
def forward(self, x):
|
|
x = self.model(x)
|
|
# Ensure output is in float32 for softmax operation
|
|
x = x.float()
|
|
logits = F.softmax(x, dim=1)
|
|
return logits
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
logits = self.forward(x)
|
|
loss = F.cross_entropy(logits, y)
|
|
self.log("train_loss", loss, prog_bar=True)
|
|
self.log("train_acc", self.train_acc(logits, y), prog_bar=True, sync_dist=True)
|
|
return {"loss": loss}
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
logits = self.forward(x)
|
|
self.log("val_loss", F.cross_entropy(logits, y), prog_bar=False, sync_dist=True)
|
|
self.log("val_acc", self.valid_acc(logits, y), prog_bar=True, sync_dist=True)
|
|
|
|
def test_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
logits = self.forward(x)
|
|
self.log("test_loss", F.cross_entropy(logits, y), prog_bar=False, sync_dist=True)
|
|
self.log("test_acc", self.test_acc(logits, y), prog_bar=True, sync_dist=True)
|
|
|
|
def predict_step(self, batch, batch_idx, dataloader_idx=None):
|
|
x, y = batch
|
|
logits = self.forward(x)
|
|
self.test_acc(logits, y)
|
|
return self.test_acc.compute()
|
|
|
|
def configure_optimizers(self):
|
|
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
|
|
|
|
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.99)
|
|
return [optimizer], [{"scheduler": lr_scheduler, "interval": "step"}]
|
|
|
|
def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
|
|
if not hasattr(self, "model"):
|
|
self.configure_sharded_model()
|
|
|
|
|
|
class ManualModelParallelClassificationModel(ModelParallelClassificationModel):
|
|
@property
|
|
def automatic_optimization(self) -> bool:
|
|
return False
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
logits = self.forward(x)
|
|
loss = F.cross_entropy(logits, y)
|
|
opt = self.optimizers()
|
|
self.log("train_loss", loss, prog_bar=True)
|
|
self.log("train_acc", self.train_acc(logits, y), prog_bar=True, sync_dist=True)
|
|
opt.zero_grad()
|
|
self.manual_backward(loss)
|
|
opt.step()
|
|
|
|
|
|
@RunIf(min_gpus=2, deepspeed=True, special=True)
|
|
def test_deepspeed_multigpu_stage_3(tmpdir, deepspeed_config):
|
|
"""
|
|
Test to ensure ZeRO Stage 3 works with a parallel model.
|
|
"""
|
|
model = ModelParallelBoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir, plugins=[DeepSpeedPlugin(stage=3)], gpus=2, fast_dev_run=True, precision=16
|
|
)
|
|
trainer.fit(model)
|
|
trainer.test(model)
|
|
|
|
_assert_save_model_is_equal(model, tmpdir, trainer)
|
|
|
|
|
|
@RunIf(min_gpus=2, deepspeed=True, special=True)
|
|
def test_deepspeed_multigpu_stage_3_manual_optimization(tmpdir, deepspeed_config):
|
|
"""
|
|
Test to ensure ZeRO Stage 3 works with a parallel model.
|
|
"""
|
|
model = ModelParallelBoringModelManualOptim()
|
|
model.training_epoch_end = None
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir, plugins=[DeepSpeedPlugin(stage=3)], gpus=2, fast_dev_run=True, precision=16
|
|
)
|
|
trainer.fit(model)
|
|
trainer.test(model)
|
|
|
|
_assert_save_model_is_equal(model, tmpdir, trainer)
|
|
|
|
|
|
def run_checkpoint_test(tmpdir: str, automatic_optimization: bool = True, accumulate_grad_batches: int = 2):
|
|
seed_everything(1)
|
|
if automatic_optimization:
|
|
model = ModelParallelClassificationModel()
|
|
else:
|
|
model = ManualModelParallelClassificationModel()
|
|
dm = ClassifDataModule()
|
|
ck = ModelCheckpoint(monitor="val_acc", mode="max", save_last=True, save_top_k=-1)
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=10,
|
|
plugins=[DeepSpeedPlugin(stage=3)],
|
|
gpus=2,
|
|
precision=16,
|
|
accumulate_grad_batches=accumulate_grad_batches,
|
|
callbacks=[ck],
|
|
)
|
|
trainer.fit(model, datamodule=dm)
|
|
|
|
results = trainer.test(datamodule=dm)
|
|
assert results[0]["test_acc"] > 0.7
|
|
saved_results = trainer.test(ckpt_path=ck.best_model_path, datamodule=dm)
|
|
assert saved_results[0]["test_acc"] > 0.7
|
|
assert saved_results == results
|
|
|
|
if automatic_optimization:
|
|
model = ModelParallelClassificationModel()
|
|
else:
|
|
model = ManualModelParallelClassificationModel()
|
|
trainer = Trainer(default_root_dir=tmpdir, gpus=2, plugins=[DeepSpeedPlugin(stage=3)], precision=16)
|
|
|
|
results = trainer.test(model, datamodule=dm, ckpt_path=ck.best_model_path)
|
|
assert results[0]["test_acc"] > 0.7
|
|
|
|
|
|
@RunIf(min_gpus=2, deepspeed=True, special=True)
|
|
def test_deepspeed_multigpu_stage_3_checkpointing(tmpdir):
|
|
"""
|
|
Test to ensure with Stage 3 and multiple GPUs that we can save/load a model resuming from a checkpoint,
|
|
and see convergence.
|
|
"""
|
|
run_checkpoint_test(tmpdir)
|
|
|
|
|
|
@RunIf(min_gpus=1, deepspeed=True, special=False)
|
|
def test_deepspeed_multigpu_stage_3_warns_resume_training(tmpdir):
|
|
"""
|
|
Test to ensure with Stage 3 and multiple GPUs that we can resume from training, throwing a warning
|
|
that the optimizer state and scheduler states cannot be restored.
|
|
"""
|
|
dm = ClassifDataModule()
|
|
model = BoringModel()
|
|
checkpoint_path = os.path.join(tmpdir, "model.pt")
|
|
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True)
|
|
trainer.fit(model)
|
|
trainer.save_checkpoint(checkpoint_path)
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
fast_dev_run=True,
|
|
plugins=DeepSpeedPlugin(stage=3, load_full_weights=True),
|
|
gpus=1,
|
|
precision=16,
|
|
resume_from_checkpoint=checkpoint_path,
|
|
)
|
|
with pytest.warns(
|
|
UserWarning,
|
|
match="A single checkpoint file has been given. This means optimizer states and "
|
|
"scheduler states can not be restored. If you'd like to restore these states, you must "
|
|
"provide a path to the originally saved DeepSpeed checkpoint.",
|
|
):
|
|
trainer.fit(model, datamodule=dm)
|
|
|
|
|
|
@RunIf(min_gpus=1, deepspeed=True, special=True)
|
|
def test_deepspeed_multigpu_stage_3_resume_training(tmpdir):
|
|
"""
|
|
Test to ensure with Stage 3 and multiple GPUs that we can resume training.
|
|
"""
|
|
initial_model = ModelParallelClassificationModel()
|
|
dm = ClassifDataModule()
|
|
|
|
ck = ModelCheckpoint(monitor="val_acc", mode="max", save_last=True, save_top_k=-1)
|
|
initial_trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
limit_train_batches=2,
|
|
limit_val_batches=2,
|
|
limit_test_batches=2,
|
|
plugins=DeepSpeedPlugin(stage=3),
|
|
gpus=1,
|
|
precision=16,
|
|
callbacks=[ck],
|
|
)
|
|
initial_trainer.fit(initial_model, datamodule=dm)
|
|
|
|
class TestCallback(Callback):
|
|
def on_train_batch_start(
|
|
self, trainer: Trainer, pl_module: LightningModule, batch: Any, batch_idx: int, dataloader_idx: int
|
|
) -> None:
|
|
original_deepspeed_plugin = initial_trainer.accelerator.training_type_plugin
|
|
current_deepspeed_plugin = trainer.accelerator.training_type_plugin
|
|
|
|
assert isinstance(original_deepspeed_plugin, DeepSpeedPlugin)
|
|
assert isinstance(current_deepspeed_plugin, DeepSpeedPlugin)
|
|
# assert optimizer states are the correctly loaded
|
|
original_optimizer_dict = original_deepspeed_plugin.deepspeed_engine.optimizer.state_dict()
|
|
current_optimizer_dict = current_deepspeed_plugin.deepspeed_engine.optimizer.state_dict()
|
|
for orig_tensor, current_tensor in zip(
|
|
original_optimizer_dict["fp32_flat_groups"], current_optimizer_dict["fp32_flat_groups"]
|
|
):
|
|
assert torch.all(orig_tensor.eq(current_tensor))
|
|
# assert model state is loaded correctly
|
|
for current_param, initial_param in zip(pl_module.parameters(), initial_model.parameters()):
|
|
assert torch.equal(current_param.cpu(), initial_param.cpu())
|
|
# assert epoch has correctly been restored
|
|
assert trainer.current_epoch == 1
|
|
|
|
model = ModelParallelClassificationModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
fast_dev_run=True,
|
|
plugins=DeepSpeedPlugin(stage=3),
|
|
gpus=1,
|
|
precision=16,
|
|
resume_from_checkpoint=ck.best_model_path,
|
|
callbacks=TestCallback(),
|
|
)
|
|
trainer.fit(model, datamodule=dm)
|
|
|
|
|
|
@RunIf(min_gpus=2, deepspeed=True, special=True)
|
|
def test_deepspeed_multigpu_stage_3_checkpointing_full_weights_manual(tmpdir):
|
|
"""
|
|
Test to ensure with Stage 3 and multiple GPUs that we can save/load a model resuming from a checkpoint,
|
|
where we save the full weights to one file.
|
|
"""
|
|
run_checkpoint_test(tmpdir, automatic_optimization=False, accumulate_grad_batches=1)
|
|
|
|
|
|
@RunIf(min_gpus=2, deepspeed=True, special=True)
|
|
def test_deepspeed_multigpu_stage_2_accumulated_grad_batches(tmpdir):
|
|
_deepspeed_multigpu_stage_2_accumulated_grad_batches(tmpdir, offload_optimizer=False)
|
|
|
|
|
|
@RunIf(min_gpus=2, deepspeed=True, special=True)
|
|
def test_deepspeed_multigpu_stage_2_accumulated_grad_batches_offload_optimizer(tmpdir):
|
|
_deepspeed_multigpu_stage_2_accumulated_grad_batches(tmpdir, offload_optimizer=True)
|
|
|
|
|
|
def _deepspeed_multigpu_stage_2_accumulated_grad_batches(tmpdir, offload_optimizer):
|
|
"""
|
|
Test to ensure with Stage 2 and multiple GPUs, accumulated grad batches works.
|
|
"""
|
|
seed_everything(42)
|
|
|
|
class VerificationCallback(Callback):
|
|
def __init__(self):
|
|
self.on_train_batch_start_called = False
|
|
|
|
def on_train_batch_start(
|
|
self, trainer, pl_module: LightningModule, batch: Any, batch_idx: int, dataloader_idx: int
|
|
) -> None:
|
|
deepspeed_engine = trainer.training_type_plugin.model
|
|
assert trainer.global_step == deepspeed_engine.global_steps
|
|
self.on_train_batch_start_called = True
|
|
|
|
model = ModelParallelClassificationModel()
|
|
dm = ClassifDataModule()
|
|
verification_callback = VerificationCallback()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=5,
|
|
plugins=[DeepSpeedPlugin(stage=2, offload_optimizer=offload_optimizer)],
|
|
gpus=2,
|
|
limit_val_batches=2,
|
|
precision=16,
|
|
accumulate_grad_batches=2,
|
|
callbacks=[verification_callback],
|
|
)
|
|
trainer.fit(model, datamodule=dm)
|
|
assert verification_callback.on_train_batch_start_called
|
|
|
|
|
|
@RunIf(min_gpus=2, deepspeed=True, special=True)
|
|
def test_deepspeed_multigpu_test(tmpdir, deepspeed_config):
|
|
"""
|
|
Test to ensure we can use DeepSpeed with just test using ZeRO Stage 3.
|
|
"""
|
|
model = ModelParallelBoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir, plugins=[DeepSpeedPlugin(stage=3)], gpus=2, fast_dev_run=True, precision=16
|
|
)
|
|
trainer.test(model)
|
|
|
|
|
|
@RunIf(deepspeed=True)
|
|
@mock.patch("deepspeed.init_distributed", autospec=True)
|
|
@pytest.mark.parametrize("platform", ["Linux", "Windows"])
|
|
def test_deepspeed_plugin_env_variables(mock_deepspeed_distributed, tmpdir, platform):
|
|
"""
|
|
Test to ensure that we setup distributed communication using correctly.
|
|
When using windows, ranks environment variables should not be set, and deepspeed should handle this.
|
|
"""
|
|
trainer = Trainer(default_root_dir=tmpdir, plugins=[DeepSpeedPlugin(stage=3)])
|
|
plugin = trainer.training_type_plugin
|
|
assert isinstance(plugin, DeepSpeedPlugin)
|
|
with mock.patch("platform.system", return_value=platform) as mock_platform:
|
|
plugin.init_ddp_connection()
|
|
mock_deepspeed_distributed.assert_called()
|
|
mock_platform.assert_called()
|
|
if platform == "Windows":
|
|
# assert no env variables have been set within the DeepSpeedPlugin
|
|
assert all(k not in os.environ for k in ("MASTER_PORT", "MASTER_ADDR", "RANK", "WORLD_SIZE", "LOCAL_RANK"))
|
|
else:
|
|
assert os.environ["MASTER_ADDR"] == str(trainer.training_type_plugin.cluster_environment.master_address())
|
|
assert os.environ["MASTER_PORT"] == str(trainer.training_type_plugin.cluster_environment.master_port())
|
|
assert os.environ["RANK"] == str(trainer.training_type_plugin.global_rank)
|
|
assert os.environ["WORLD_SIZE"] == str(trainer.training_type_plugin.world_size)
|
|
assert os.environ["LOCAL_RANK"] == str(trainer.training_type_plugin.local_rank)
|
|
|
|
|
|
def _assert_save_model_is_equal(model, tmpdir, trainer):
|
|
checkpoint_path = os.path.join(tmpdir, "model.pt")
|
|
checkpoint_path = trainer.accelerator.broadcast(checkpoint_path)
|
|
trainer.save_checkpoint(checkpoint_path)
|
|
trainer.accelerator.barrier()
|
|
|
|
# carry out the check only on rank 0
|
|
if trainer.is_global_zero:
|
|
single_ckpt_path = os.path.join(tmpdir, "single_model.pt")
|
|
convert_zero_checkpoint_to_fp32_state_dict(checkpoint_path, single_ckpt_path)
|
|
state_dict = torch.load(single_ckpt_path)
|
|
|
|
model = model.cpu()
|
|
# Assert model parameters are identical after loading
|
|
for orig_param, saved_model_param in zip(model.parameters(), state_dict.values()):
|
|
if model.dtype == torch.half:
|
|
# moved model to float32 for comparison with single fp32 saved weights
|
|
saved_model_param = saved_model_param.half()
|
|
assert torch.equal(orig_param, saved_model_param)
|
|
|
|
|
|
@RunIf(min_gpus=2, deepspeed=True, special=True)
|
|
def test_deepspeed_multigpu_no_schedulers(tmpdir):
|
|
"""
|
|
Test to ensure ZeRO Stage 3 works with a parallel model and no schedulers.
|
|
"""
|
|
model = ModelParallelBoringModelNoSchedulers()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir, plugins=[DeepSpeedPlugin(stage=3)], gpus=2, fast_dev_run=True, precision=16
|
|
)
|
|
trainer.fit(model)
|
|
|
|
_assert_save_model_is_equal(model, tmpdir, trainer)
|