import json import os from typing import Any, Dict from unittest import mock import pytest import torch import torch.nn.functional as F from torch import nn, Tensor from torch.optim import Optimizer from torch.utils.data import DataLoader from torchmetrics import Accuracy from pytorch_lightning import LightningModule, seed_everything, Trainer from pytorch_lightning.callbacks import Callback, LearningRateMonitor, ModelCheckpoint from pytorch_lightning.plugins import DeepSpeedPlugin, DeepSpeedPrecisionPlugin from pytorch_lightning.plugins.training_type.deepspeed import LightningDeepSpeedModule from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.imports import _DEEPSPEED_AVAILABLE from tests.helpers.boring_model import BoringModel, RandomDataset, RandomIterableDataset from tests.helpers.datamodules import ClassifDataModule from tests.helpers.runif import RunIf if _DEEPSPEED_AVAILABLE: from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict class ModelParallelBoringModel(BoringModel): def __init__(self): super().__init__() self.layer = None def configure_sharded_model(self) -> None: self.layer = torch.nn.Linear(32, 2) def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None: self.configure_sharded_model() class ModelParallelBoringModelNoSchedulers(ModelParallelBoringModel): def configure_optimizers(self): return torch.optim.SGD(self.layer.parameters(), lr=0.1) class ModelParallelBoringModelManualOptim(BoringModel): def __init__(self): super().__init__() self.layer = None def training_step(self, batch, batch_idx): opt = self.optimizers() output = self(batch) loss = self.loss(batch, output) opt.zero_grad() self.manual_backward(loss) opt.step() def configure_sharded_model(self) -> None: self.layer = torch.nn.Linear(32, 2) def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None: self.configure_sharded_model() @property def automatic_optimization(self) -> bool: return False def test_deepspeed_lightning_module(tmpdir): """ Test to ensure that a model wrapped in `LightningDeepSpeedModule` moves types and device correctly. """ model = BoringModel() module = LightningDeepSpeedModule(model, precision=16) module.half() assert module.dtype == torch.half assert model.dtype == torch.half module.to(torch.double) assert module.dtype == torch.double assert model.dtype == torch.double @RunIf(min_gpus=1) def test_deepspeed_lightning_module_precision(tmpdir): """ Test to ensure that a model wrapped in `LightningDeepSpeedModule` moves tensors to half when precision 16. """ model = BoringModel() module = LightningDeepSpeedModule(model, precision=16) module.cuda().half() assert module.dtype == torch.half assert model.dtype == torch.half x = torch.randn((1, 32), dtype=torch.float).cuda() out = module(x) assert out.dtype == torch.half module.to(torch.double) assert module.dtype == torch.double assert model.dtype == torch.double @pytest.fixture def deepspeed_config(): return { "optimizer": {"type": "SGD", "params": {"lr": 3e-5}}, "scheduler": { "type": "WarmupLR", "params": {"last_batch_iteration": -1, "warmup_min_lr": 0, "warmup_max_lr": 3e-5, "warmup_num_steps": 100}, }, } @pytest.fixture def deepspeed_zero_config(deepspeed_config): return {**deepspeed_config, "zero_allow_untested_optimizer": True, "zero_optimization": {"stage": 2}} @RunIf(deepspeed=True) @pytest.mark.parametrize("input", ("deepspeed", DeepSpeedPlugin)) def test_deepspeed_plugin_string(tmpdir, input): """ Test to ensure that the plugin can be passed via string or instance, and parallel devices is correctly set. """ trainer = Trainer(fast_dev_run=True, default_root_dir=tmpdir, plugins=input if isinstance(input, str) else input()) assert isinstance(trainer.accelerator.training_type_plugin, DeepSpeedPlugin) assert trainer.accelerator.training_type_plugin.parallel_devices == [torch.device("cpu")] @RunIf(deepspeed=True) def test_deepspeed_plugin_env(tmpdir, monkeypatch, deepspeed_config): """ Test to ensure that the plugin can be passed via a string with an environment variable. """ config_path = os.path.join(tmpdir, "temp.json") with open(config_path, "w") as f: f.write(json.dumps(deepspeed_config)) monkeypatch.setenv("PL_DEEPSPEED_CONFIG_PATH", config_path) trainer = Trainer(fast_dev_run=True, default_root_dir=tmpdir, plugins="deepspeed") plugin = trainer.accelerator.training_type_plugin assert isinstance(plugin, DeepSpeedPlugin) assert plugin.parallel_devices == [torch.device("cpu")] assert plugin.config == deepspeed_config @RunIf(amp_native=True, deepspeed=True) @pytest.mark.parametrize("precision", [16, "mixed"]) @pytest.mark.parametrize( "amp_backend", [pytest.param("native", marks=RunIf(amp_native=True)), pytest.param("apex", marks=RunIf(amp_apex=True))], ) def test_deepspeed_precision_choice(amp_backend, precision, tmpdir): """ Test to ensure precision plugin is also correctly chosen. DeepSpeed handles precision via Custom DeepSpeedPrecisionPlugin """ trainer = Trainer( fast_dev_run=True, default_root_dir=tmpdir, plugins="deepspeed", amp_backend=amp_backend, precision=precision ) assert isinstance(trainer.accelerator.training_type_plugin, DeepSpeedPlugin) assert isinstance(trainer.accelerator.precision_plugin, DeepSpeedPrecisionPlugin) assert trainer.accelerator.precision_plugin.precision == precision @RunIf(deepspeed=True) def test_deepspeed_with_invalid_config_path(tmpdir): """ Test to ensure if we pass an invalid config path we throw an exception. """ with pytest.raises( MisconfigurationException, match="You passed in a path to a DeepSpeed config but the path does not exist" ): DeepSpeedPlugin(config="invalid_path.json") @RunIf(deepspeed=True) def test_deepspeed_with_env_path(tmpdir, monkeypatch, deepspeed_config): """ Test to ensure if we pass an env variable, we load the config from the path. """ config_path = os.path.join(tmpdir, "temp.json") with open(config_path, "w") as f: f.write(json.dumps(deepspeed_config)) monkeypatch.setenv("PL_DEEPSPEED_CONFIG_PATH", config_path) plugin = DeepSpeedPlugin() assert plugin.config == deepspeed_config @RunIf(deepspeed=True) def test_deepspeed_defaults(tmpdir): """ Ensure that defaults are correctly set as a config for DeepSpeed if no arguments are passed. """ plugin = DeepSpeedPlugin() assert plugin.config is not None assert isinstance(plugin.config["zero_optimization"], dict) @RunIf(min_gpus=1, deepspeed=True, special=True) def test_warn_deepspeed_override_backward(tmpdir): """Test to ensure that if the backward hook in the LightningModule is overridden, we throw a warning.""" class TestModel(BoringModel): def backward(self, loss: Tensor, optimizer: Optimizer, optimizer_idx: int, *args, **kwargs) -> None: return loss.backward() model = TestModel() trainer = Trainer(fast_dev_run=True, default_root_dir=tmpdir, plugins=DeepSpeedPlugin(), gpus=1, precision=16) with pytest.warns(UserWarning, match="will be ignored since DeepSpeed handles the backward"): trainer.fit(model) @RunIf(min_gpus=1, deepspeed=True, special=True) @pytest.mark.parametrize( ["dataset_cls", "value"], [(RandomDataset, "auto"), (RandomDataset, 10), (RandomIterableDataset, "auto"), (RandomIterableDataset, 10)], ) def test_deepspeed_auto_batch_size_config_select(tmpdir, dataset_cls, value): """Test to ensure that the batch size is correctly set as expected for deepspeed logging purposes.""" class TestModel(BoringModel): def train_dataloader(self): return DataLoader(dataset_cls(32, 64)) class AssertCallback(Callback): def on_train_start(self, trainer, pl_module) -> None: assert isinstance(trainer.accelerator.training_type_plugin, DeepSpeedPlugin) config = trainer.accelerator.training_type_plugin.config # int value overrides auto mode expected_value = value if isinstance(value, int) else 1 if dataset_cls == RandomDataset: expected_value = pl_module.train_dataloader().batch_size if value == "auto" else value assert config["train_micro_batch_size_per_gpu"] == expected_value raise SystemExit ck = AssertCallback() model = TestModel() trainer = Trainer( default_root_dir=tmpdir, fast_dev_run=True, callbacks=ck, gpus=1, plugins=DeepSpeedPlugin(logging_batch_size_per_gpu=value, zero_optimization=False), ) with pytest.raises(SystemExit): trainer.fit(model) @RunIf(min_gpus=1, deepspeed=True, special=True) def test_deepspeed_run_configure_optimizers(tmpdir): """ Test end to end that deepspeed works with defaults (without ZeRO as that requires compilation), whilst using configure_optimizers for optimizers and schedulers. """ class TestCB(Callback): def on_train_start(self, trainer, pl_module) -> None: from deepspeed.runtime.zero.stage2 import FP16_DeepSpeedZeroOptimizer assert isinstance(trainer.optimizers[0], FP16_DeepSpeedZeroOptimizer) assert isinstance(trainer.optimizers[0].optimizer, torch.optim.SGD) assert isinstance(trainer.lr_schedulers[0]["scheduler"], torch.optim.lr_scheduler.StepLR) # check that the lr_scheduler config was preserved assert trainer.lr_schedulers[0]["name"] == "Sean" # Ensure DeepSpeed engine has initialized with our lr_scheduler assert isinstance(trainer.model.lr_scheduler, torch.optim.lr_scheduler.StepLR) class TestModel(BoringModel): def configure_optimizers(self): [optimizer], [scheduler] = super().configure_optimizers() return {"optimizer": optimizer, "lr_scheduler": {"scheduler": scheduler, "name": "Sean"}} model = TestModel() lr_monitor = LearningRateMonitor() trainer = Trainer( plugins=DeepSpeedPlugin(), # disable ZeRO so our optimizers are not wrapped default_root_dir=tmpdir, gpus=1, fast_dev_run=True, precision=16, callbacks=[TestCB(), lr_monitor], ) trainer.fit(model) assert lr_monitor.lrs == {"Sean": [0.1]} _assert_save_model_is_equal(model, tmpdir, trainer) @RunIf(min_gpus=1, deepspeed=True, special=True) def test_deepspeed_config(tmpdir, deepspeed_zero_config): """ Test to ensure deepspeed works correctly when passed a DeepSpeed config object including optimizers/schedulers and saves the model weights to load correctly. """ class TestCB(Callback): def on_train_start(self, trainer, pl_module) -> None: from deepspeed.runtime.lr_schedules import WarmupLR from deepspeed.runtime.zero.stage2 import FP16_DeepSpeedZeroOptimizer assert isinstance(trainer.optimizers[0], FP16_DeepSpeedZeroOptimizer) assert isinstance(trainer.optimizers[0].optimizer, torch.optim.SGD) assert isinstance(trainer.lr_schedulers[0]["scheduler"], WarmupLR) # Ensure DeepSpeed engine has initialized with our lr_scheduler assert isinstance(trainer.model.lr_scheduler, WarmupLR) model = BoringModel() trainer = Trainer( plugins=[DeepSpeedPlugin(config=deepspeed_zero_config)], default_root_dir=tmpdir, gpus=1, fast_dev_run=True, precision=16, callbacks=[TestCB()], ) trainer.fit(model) trainer.test(model) @RunIf(min_gpus=1, deepspeed=True, special=True) def test_deepspeed_custom_precision_params(tmpdir): """Ensure if we modify the FP16 parameters via the DeepSpeedPlugin, the deepspeed config contains these changes.""" class TestCB(Callback): def on_train_start(self, trainer, pl_module) -> None: assert trainer.training_type_plugin.config["fp16"]["loss_scale"] == 10 assert trainer.training_type_plugin.config["fp16"]["initial_scale_power"] == 10 assert trainer.training_type_plugin.config["fp16"]["loss_scale_window"] == 10 assert trainer.training_type_plugin.config["fp16"]["hysteresis"] == 10 assert trainer.training_type_plugin.config["fp16"]["min_loss_scale"] == 10 raise SystemExit() model = BoringModel() ds = DeepSpeedPlugin(loss_scale=10, initial_scale_power=10, loss_scale_window=10, hysteresis=10, min_loss_scale=10) trainer = Trainer(default_root_dir=tmpdir, plugins=[ds], precision=16, gpus=1, callbacks=[TestCB()]) with pytest.raises(SystemExit): trainer.fit(model) @RunIf(deepspeed=True) def test_deepspeed_custom_activation_checkpointing_params(tmpdir): """Ensure if we modify the activation checkpointing parameters, the deepspeed config contains these changes.""" ds = DeepSpeedPlugin( partition_activations=True, cpu_checkpointing=True, contiguous_memory_optimization=True, synchronize_checkpoint_boundary=True, ) checkpoint_config = ds.config["activation_checkpointing"] assert checkpoint_config["partition_activations"] assert checkpoint_config["cpu_checkpointing"] assert checkpoint_config["contiguous_memory_optimization"] assert checkpoint_config["synchronize_checkpoint_boundary"] @RunIf(min_gpus=1, deepspeed=True) def test_deepspeed_assert_config_zero_offload_disabled(tmpdir, deepspeed_zero_config): """Ensure if we use a config and turn off cpu_offload, that this is set to False within the config.""" deepspeed_zero_config["zero_optimization"]["cpu_offload"] = False class TestCallback(Callback): def on_before_accelerator_backend_setup(self, trainer, pl_module) -> None: assert trainer.training_type_plugin.config["zero_optimization"]["cpu_offload"] is False raise SystemExit() model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, progress_bar_refresh_rate=0, max_epochs=1, plugins=[DeepSpeedPlugin(config=deepspeed_zero_config)], precision=16, gpus=1, callbacks=[TestCallback()], ) with pytest.raises(SystemExit): trainer.fit(model) @RunIf(min_gpus=2, deepspeed=True, special=True) def test_deepspeed_multigpu(tmpdir): """ Test to ensure that DeepSpeed with multiple GPUs works. """ model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, plugins=[DeepSpeedPlugin(stage=3)], gpus=2, fast_dev_run=True, precision=16 ) trainer.fit(model) trainer.test(model) _assert_save_model_is_equal(model, tmpdir, trainer) @RunIf(min_gpus=1, deepspeed=True, special=True) def test_deepspeed_fp32_works(tmpdir): model = BoringModel() trainer = Trainer(default_root_dir=tmpdir, gpus=1, plugins="deepspeed_stage_3", fast_dev_run=True) trainer.fit(model) @RunIf(min_gpus=2, deepspeed=True, special=True) def test_deepspeed_stage_3_save_warning(tmpdir): """ Test to ensure that DeepSpeed Stage 3 gives a warning when saving. """ model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, plugins=[DeepSpeedPlugin(stage=3)], gpus=2, fast_dev_run=True, precision=16 ) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, "model.pt") with pytest.warns(UserWarning, match="each worker will save a shard of the checkpoint within a directory."): trainer.save_checkpoint(checkpoint_path) @RunIf(min_gpus=1, deepspeed=True, special=True) def test_deepspeed_multigpu_single_file(tmpdir): """ Test to ensure that DeepSpeed loads from a single file checkpoint. """ model = BoringModel() checkpoint_path = os.path.join(tmpdir, "model.pt") trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True) trainer.fit(model) trainer.save_checkpoint(checkpoint_path) trainer = Trainer( default_root_dir=tmpdir, plugins=[DeepSpeedPlugin(stage=3)], gpus=1, fast_dev_run=True, precision=16 ) plugin = trainer.training_type_plugin assert isinstance(plugin, DeepSpeedPlugin) assert not plugin.load_full_weights with pytest.raises(MisconfigurationException, match="DeepSpeed was unable to load the checkpoint."): trainer.test(model, ckpt_path=checkpoint_path) trainer = Trainer( default_root_dir=tmpdir, plugins=[DeepSpeedPlugin(stage=3, load_full_weights=True)], gpus=1, fast_dev_run=True, precision=16, ) plugin = trainer.training_type_plugin assert isinstance(plugin, DeepSpeedPlugin) assert plugin.load_full_weights trainer.test(model, ckpt_path=checkpoint_path) class ModelParallelClassificationModel(LightningModule): def __init__(self, lr: float = 0.01, num_blocks: int = 5): super().__init__() self.lr = lr self.num_blocks = num_blocks self.train_acc = Accuracy() self.valid_acc = Accuracy() self.test_acc = Accuracy() def make_block(self): return nn.Sequential(nn.Linear(32, 32, bias=False), nn.ReLU()) def configure_sharded_model(self) -> None: self.model = nn.Sequential(*(self.make_block() for x in range(self.num_blocks)), nn.Linear(32, 3)) def forward(self, x): x = self.model(x) # Ensure output is in float32 for softmax operation x = x.float() logits = F.softmax(x, dim=1) return logits def training_step(self, batch, batch_idx): x, y = batch logits = self.forward(x) loss = F.cross_entropy(logits, y) self.log("train_loss", loss, prog_bar=True) self.log("train_acc", self.train_acc(logits, y), prog_bar=True, sync_dist=True) return {"loss": loss} def validation_step(self, batch, batch_idx): x, y = batch logits = self.forward(x) self.log("val_loss", F.cross_entropy(logits, y), prog_bar=False, sync_dist=True) self.log("val_acc", self.valid_acc(logits, y), prog_bar=True, sync_dist=True) def test_step(self, batch, batch_idx): x, y = batch logits = self.forward(x) self.log("test_loss", F.cross_entropy(logits, y), prog_bar=False, sync_dist=True) self.log("test_acc", self.test_acc(logits, y), prog_bar=True, sync_dist=True) def predict_step(self, batch, batch_idx, dataloader_idx=None): x, y = batch logits = self.forward(x) self.test_acc(logits, y) return self.test_acc.compute() def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=self.lr) lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.99) return [optimizer], [{"scheduler": lr_scheduler, "interval": "step"}] def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None: if not hasattr(self, "model"): self.configure_sharded_model() class ManualModelParallelClassificationModel(ModelParallelClassificationModel): @property def automatic_optimization(self) -> bool: return False def training_step(self, batch, batch_idx): x, y = batch logits = self.forward(x) loss = F.cross_entropy(logits, y) opt = self.optimizers() self.log("train_loss", loss, prog_bar=True) self.log("train_acc", self.train_acc(logits, y), prog_bar=True, sync_dist=True) opt.zero_grad() self.manual_backward(loss) opt.step() @RunIf(min_gpus=2, deepspeed=True, special=True) def test_deepspeed_multigpu_stage_3(tmpdir, deepspeed_config): """ Test to ensure ZeRO Stage 3 works with a parallel model. """ model = ModelParallelBoringModel() trainer = Trainer( default_root_dir=tmpdir, plugins=[DeepSpeedPlugin(stage=3)], gpus=2, fast_dev_run=True, precision=16 ) trainer.fit(model) trainer.test(model) _assert_save_model_is_equal(model, tmpdir, trainer) @RunIf(min_gpus=2, deepspeed=True, special=True) def test_deepspeed_multigpu_stage_3_manual_optimization(tmpdir, deepspeed_config): """ Test to ensure ZeRO Stage 3 works with a parallel model. """ model = ModelParallelBoringModelManualOptim() model.training_epoch_end = None trainer = Trainer( default_root_dir=tmpdir, plugins=[DeepSpeedPlugin(stage=3)], gpus=2, fast_dev_run=True, precision=16 ) trainer.fit(model) trainer.test(model) _assert_save_model_is_equal(model, tmpdir, trainer) def run_checkpoint_test(tmpdir: str, automatic_optimization: bool = True, accumulate_grad_batches: int = 2): seed_everything(1) if automatic_optimization: model = ModelParallelClassificationModel() else: model = ManualModelParallelClassificationModel() dm = ClassifDataModule() ck = ModelCheckpoint(monitor="val_acc", mode="max", save_last=True, save_top_k=-1) trainer = Trainer( default_root_dir=tmpdir, max_epochs=10, plugins=[DeepSpeedPlugin(stage=3)], gpus=2, precision=16, accumulate_grad_batches=accumulate_grad_batches, callbacks=[ck], ) trainer.fit(model, datamodule=dm) results = trainer.test(datamodule=dm) assert results[0]["test_acc"] > 0.7 saved_results = trainer.test(ckpt_path=ck.best_model_path, datamodule=dm) assert saved_results[0]["test_acc"] > 0.7 assert saved_results == results if automatic_optimization: model = ModelParallelClassificationModel() else: model = ManualModelParallelClassificationModel() trainer = Trainer(default_root_dir=tmpdir, gpus=2, plugins=[DeepSpeedPlugin(stage=3)], precision=16) results = trainer.test(model, datamodule=dm, ckpt_path=ck.best_model_path) assert results[0]["test_acc"] > 0.7 @RunIf(min_gpus=2, deepspeed=True, special=True) def test_deepspeed_multigpu_stage_3_checkpointing(tmpdir): """ Test to ensure with Stage 3 and multiple GPUs that we can save/load a model resuming from a checkpoint, and see convergence. """ run_checkpoint_test(tmpdir) @RunIf(min_gpus=1, deepspeed=True, special=False) def test_deepspeed_multigpu_stage_3_warns_resume_training(tmpdir): """ Test to ensure with Stage 3 and multiple GPUs that we can resume from training, throwing a warning that the optimizer state and scheduler states cannot be restored. """ dm = ClassifDataModule() model = BoringModel() checkpoint_path = os.path.join(tmpdir, "model.pt") trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True) trainer.fit(model) trainer.save_checkpoint(checkpoint_path) trainer = Trainer( default_root_dir=tmpdir, fast_dev_run=True, plugins=DeepSpeedPlugin(stage=3, load_full_weights=True), gpus=1, precision=16, resume_from_checkpoint=checkpoint_path, ) with pytest.warns( UserWarning, match="A single checkpoint file has been given. This means optimizer states and " "scheduler states can not be restored. If you'd like to restore these states, you must " "provide a path to the originally saved DeepSpeed checkpoint.", ): trainer.fit(model, datamodule=dm) @RunIf(min_gpus=1, deepspeed=True, special=True) def test_deepspeed_multigpu_stage_3_resume_training(tmpdir): """ Test to ensure with Stage 3 and multiple GPUs that we can resume training. """ initial_model = ModelParallelClassificationModel() dm = ClassifDataModule() ck = ModelCheckpoint(monitor="val_acc", mode="max", save_last=True, save_top_k=-1) initial_trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=2, limit_val_batches=2, limit_test_batches=2, plugins=DeepSpeedPlugin(stage=3), gpus=1, precision=16, callbacks=[ck], ) initial_trainer.fit(initial_model, datamodule=dm) class TestCallback(Callback): def on_train_batch_start( self, trainer: Trainer, pl_module: LightningModule, batch: Any, batch_idx: int, dataloader_idx: int ) -> None: original_deepspeed_plugin = initial_trainer.accelerator.training_type_plugin current_deepspeed_plugin = trainer.accelerator.training_type_plugin assert isinstance(original_deepspeed_plugin, DeepSpeedPlugin) assert isinstance(current_deepspeed_plugin, DeepSpeedPlugin) # assert optimizer states are the correctly loaded original_optimizer_dict = original_deepspeed_plugin.deepspeed_engine.optimizer.state_dict() current_optimizer_dict = current_deepspeed_plugin.deepspeed_engine.optimizer.state_dict() for orig_tensor, current_tensor in zip( original_optimizer_dict["fp32_flat_groups"], current_optimizer_dict["fp32_flat_groups"] ): assert torch.all(orig_tensor.eq(current_tensor)) # assert model state is loaded correctly for current_param, initial_param in zip(pl_module.parameters(), initial_model.parameters()): assert torch.equal(current_param.cpu(), initial_param.cpu()) # assert epoch has correctly been restored assert trainer.current_epoch == 1 model = ModelParallelClassificationModel() trainer = Trainer( default_root_dir=tmpdir, fast_dev_run=True, plugins=DeepSpeedPlugin(stage=3), gpus=1, precision=16, resume_from_checkpoint=ck.best_model_path, callbacks=TestCallback(), ) trainer.fit(model, datamodule=dm) @RunIf(min_gpus=2, deepspeed=True, special=True) def test_deepspeed_multigpu_stage_3_checkpointing_full_weights_manual(tmpdir): """ Test to ensure with Stage 3 and multiple GPUs that we can save/load a model resuming from a checkpoint, where we save the full weights to one file. """ run_checkpoint_test(tmpdir, automatic_optimization=False, accumulate_grad_batches=1) @RunIf(min_gpus=2, deepspeed=True, special=True) def test_deepspeed_multigpu_stage_2_accumulated_grad_batches(tmpdir): _deepspeed_multigpu_stage_2_accumulated_grad_batches(tmpdir, offload_optimizer=False) @RunIf(min_gpus=2, deepspeed=True, special=True) def test_deepspeed_multigpu_stage_2_accumulated_grad_batches_offload_optimizer(tmpdir): _deepspeed_multigpu_stage_2_accumulated_grad_batches(tmpdir, offload_optimizer=True) def _deepspeed_multigpu_stage_2_accumulated_grad_batches(tmpdir, offload_optimizer): """ Test to ensure with Stage 2 and multiple GPUs, accumulated grad batches works. """ seed_everything(42) class VerificationCallback(Callback): def __init__(self): self.on_train_batch_start_called = False def on_train_batch_start( self, trainer, pl_module: LightningModule, batch: Any, batch_idx: int, dataloader_idx: int ) -> None: deepspeed_engine = trainer.training_type_plugin.model assert trainer.global_step == deepspeed_engine.global_steps self.on_train_batch_start_called = True model = ModelParallelClassificationModel() dm = ClassifDataModule() verification_callback = VerificationCallback() trainer = Trainer( default_root_dir=tmpdir, progress_bar_refresh_rate=0, max_epochs=5, plugins=[DeepSpeedPlugin(stage=2, offload_optimizer=offload_optimizer)], gpus=2, limit_val_batches=2, precision=16, accumulate_grad_batches=2, callbacks=[verification_callback], ) trainer.fit(model, datamodule=dm) assert verification_callback.on_train_batch_start_called @RunIf(min_gpus=2, deepspeed=True, special=True) def test_deepspeed_multigpu_test(tmpdir, deepspeed_config): """ Test to ensure we can use DeepSpeed with just test using ZeRO Stage 3. """ model = ModelParallelBoringModel() trainer = Trainer( default_root_dir=tmpdir, plugins=[DeepSpeedPlugin(stage=3)], gpus=2, fast_dev_run=True, precision=16 ) trainer.test(model) @RunIf(deepspeed=True) @mock.patch("deepspeed.init_distributed", autospec=True) @pytest.mark.parametrize("platform", ["Linux", "Windows"]) def test_deepspeed_plugin_env_variables(mock_deepspeed_distributed, tmpdir, platform): """ Test to ensure that we setup distributed communication using correctly. When using windows, ranks environment variables should not be set, and deepspeed should handle this. """ trainer = Trainer(default_root_dir=tmpdir, plugins=[DeepSpeedPlugin(stage=3)]) plugin = trainer.training_type_plugin assert isinstance(plugin, DeepSpeedPlugin) with mock.patch("platform.system", return_value=platform) as mock_platform: plugin.init_ddp_connection() mock_deepspeed_distributed.assert_called() mock_platform.assert_called() if platform == "Windows": # assert no env variables have been set within the DeepSpeedPlugin assert all(k not in os.environ for k in ("MASTER_PORT", "MASTER_ADDR", "RANK", "WORLD_SIZE", "LOCAL_RANK")) else: assert os.environ["MASTER_ADDR"] == str(trainer.training_type_plugin.cluster_environment.master_address()) assert os.environ["MASTER_PORT"] == str(trainer.training_type_plugin.cluster_environment.master_port()) assert os.environ["RANK"] == str(trainer.training_type_plugin.global_rank) assert os.environ["WORLD_SIZE"] == str(trainer.training_type_plugin.world_size) assert os.environ["LOCAL_RANK"] == str(trainer.training_type_plugin.local_rank) def _assert_save_model_is_equal(model, tmpdir, trainer): checkpoint_path = os.path.join(tmpdir, "model.pt") checkpoint_path = trainer.accelerator.broadcast(checkpoint_path) trainer.save_checkpoint(checkpoint_path) trainer.accelerator.barrier() # carry out the check only on rank 0 if trainer.is_global_zero: single_ckpt_path = os.path.join(tmpdir, "single_model.pt") convert_zero_checkpoint_to_fp32_state_dict(checkpoint_path, single_ckpt_path) state_dict = torch.load(single_ckpt_path) model = model.cpu() # Assert model parameters are identical after loading for orig_param, saved_model_param in zip(model.parameters(), state_dict.values()): if model.dtype == torch.half: # moved model to float32 for comparison with single fp32 saved weights saved_model_param = saved_model_param.half() assert torch.equal(orig_param, saved_model_param) @RunIf(min_gpus=2, deepspeed=True, special=True) def test_deepspeed_multigpu_no_schedulers(tmpdir): """ Test to ensure ZeRO Stage 3 works with a parallel model and no schedulers. """ model = ModelParallelBoringModelNoSchedulers() trainer = Trainer( default_root_dir=tmpdir, plugins=[DeepSpeedPlugin(stage=3)], gpus=2, fast_dev_run=True, precision=16 ) trainer.fit(model) _assert_save_model_is_equal(model, tmpdir, trainer)