131 lines
4.0 KiB
Python
131 lines
4.0 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Dict, Optional
|
|
|
|
import pytest
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.callbacks import DeviceStatsMonitor
|
|
from pytorch_lightning.loggers import CSVLogger
|
|
from pytorch_lightning.utilities.distributed import rank_zero_only
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from tests.helpers import BoringModel
|
|
from tests.helpers.runif import RunIf
|
|
|
|
|
|
@RunIf(min_torch="1.8")
|
|
@RunIf(min_gpus=1)
|
|
def test_device_stats_gpu_from_torch(tmpdir):
|
|
"""Test GPU stats are logged using a logger with Pytorch >= 1.8.0."""
|
|
model = BoringModel()
|
|
device_stats = DeviceStatsMonitor()
|
|
|
|
class DebugLogger(CSVLogger):
|
|
@rank_zero_only
|
|
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None:
|
|
fields = ["allocated_bytes.all.freed", "inactive_split.all.peak", "reserved_bytes.large_pool.peak"]
|
|
for f in fields:
|
|
assert any(f in h for h in metrics.keys())
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=2,
|
|
limit_train_batches=7,
|
|
log_every_n_steps=1,
|
|
gpus=1,
|
|
callbacks=[device_stats],
|
|
logger=DebugLogger(tmpdir),
|
|
enable_checkpointing=False,
|
|
enable_progress_bar=False,
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(max_torch="1.7")
|
|
@RunIf(min_gpus=1)
|
|
def test_device_stats_gpu_from_nvidia(tmpdir):
|
|
"""Test GPU stats are logged using a logger with Pytorch < 1.8.0."""
|
|
model = BoringModel()
|
|
device_stats = DeviceStatsMonitor()
|
|
|
|
class DebugLogger(CSVLogger):
|
|
@rank_zero_only
|
|
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None:
|
|
fields = ["utilization.gpu", "memory.used", "memory.free", "utilization.memory"]
|
|
for f in fields:
|
|
assert any(f in h for h in metrics.keys())
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=2,
|
|
limit_train_batches=7,
|
|
log_every_n_steps=1,
|
|
gpus=1,
|
|
callbacks=[device_stats],
|
|
logger=DebugLogger(tmpdir),
|
|
enable_checkpointing=False,
|
|
enable_progress_bar=False,
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
def test_device_stats_monitor_tpu(tmpdir):
|
|
"""Test TPU stats are logged using a logger."""
|
|
|
|
model = BoringModel()
|
|
device_stats = DeviceStatsMonitor()
|
|
|
|
class DebugLogger(CSVLogger):
|
|
@rank_zero_only
|
|
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None:
|
|
fields = ["avg. free memory (MB)", "avg. peak memory (MB)"]
|
|
for f in fields:
|
|
assert any(f in h for h in metrics.keys())
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
limit_train_batches=1,
|
|
tpu_cores=8,
|
|
log_every_n_steps=1,
|
|
callbacks=[device_stats],
|
|
logger=DebugLogger(tmpdir),
|
|
enable_checkpointing=False,
|
|
enable_progress_bar=False,
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
def test_device_stats_monitor_no_logger(tmpdir):
|
|
"""Test DeviceStatsMonitor with no logger in Trainer."""
|
|
|
|
model = BoringModel()
|
|
device_stats = DeviceStatsMonitor()
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
callbacks=[device_stats],
|
|
max_epochs=1,
|
|
logger=False,
|
|
enable_checkpointing=False,
|
|
enable_progress_bar=False,
|
|
)
|
|
|
|
with pytest.raises(MisconfigurationException, match="Trainer that has no logger."):
|
|
trainer.fit(model)
|