lightning/tests
Adrian Wälchli 4eede7c30b
Add deprecation path for renamed training type plugins (#11227)
Co-authored-by: Kaushik B <kaushikbokka@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-01-03 13:41:05 +01:00
..
accelerators Update strategy import statements (#11231) 2021-12-23 08:26:28 +01:00
benchmarks Update strategy import statements (#11231) 2021-12-23 08:26:28 +01:00
callbacks Update strategy import statements (#11231) 2021-12-23 08:26:28 +01:00
checkpointing Deprecate Trainer.training_type_plugin in favor of trainer.strategy (#11141) 2021-12-22 02:11:43 +00:00
core Rename training_type_plugin file to strategy (#11239) 2021-12-23 14:01:23 +00:00
deprecated_api Add deprecation path for renamed training type plugins (#11227) 2022-01-03 13:41:05 +01:00
helpers Remove `hpc_save` (#11101) 2022-01-03 12:23:13 +00:00
lite Update strategy import statements (#11231) 2021-12-23 08:26:28 +01:00
loggers Return only unique names/versions for LoggerCollection (#10976) 2021-12-23 00:35:38 +00:00
loops Reset the progress tracking state after sanity checking (#11218) 2021-12-23 16:36:03 +00:00
models Remove `hpc_save` (#11101) 2022-01-03 12:23:13 +00:00
overrides Fix retrieval of batch indices when dataloader num_workers > 0 (#10870) 2021-12-02 10:36:10 +00:00
plugins Update strategy import statements (#11231) 2021-12-23 08:26:28 +01:00
profiler Revert "[CI] Comment flaky tests (#10084)" (#10580) 2022-01-03 12:45:41 +01:00
trainer Remove `hpc_save` (#11101) 2022-01-03 12:23:13 +00:00
tuner Prune EvalModelTemplate (1/n) (#10969) 2021-12-07 18:04:06 +00:00
utilities Update strategy import statements (#11231) 2021-12-23 08:26:28 +01:00
README.md CI: add mdformat (#8673) 2021-08-03 18:19:09 +00:00
__init__.py Replace `yapf` with `black` (#7783) 2021-07-26 13:37:35 +02:00
conftest.py Drop Python 3.6 support (#11117) 2021-12-21 17:06:15 +00:00
standalone_tests.sh Fix selection of standalone tests (#10857) 2021-12-01 09:48:37 +01:00

README.md

PyTorch-Lightning Tests

Most PL tests train a full MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). This provides testing for most combinations of important settings. The tests expect the model to perform to a reasonable degree of testing accuracy to pass.

Running tests

git clone https://github.com/PyTorchLightning/pytorch-lightning
cd pytorch-lightning

# install dev deps
pip install -r requirements/devel.txt

# run tests
py.test -v

To test models that require GPU make sure to run the above command on a GPU machine. The GPU machine must have at least 2 GPUs to run distributed tests.

Note that this setup will not run tests that require specific packages installed such as Horovod, FairScale, NVIDIA/apex, NVIDIA/DALI, etc. You can rely on our CI to make sure all these tests pass.

Running Coverage

Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.

cd pytorch-lightning

# generate coverage (coverage is also installed as part of dev dependencies under requirements/devel.txt)
coverage run --source pytorch_lightning -m py.test pytorch_lightning tests examples -v

# print coverage stats
coverage report -m

# exporting results
coverage xml

Building test image

You can build it on your own, note it takes lots of time, be prepared.

git clone <git-repository>
docker image build -t pytorch_lightning:devel-torch1.9 -f dockers/cuda-extras/Dockerfile --build-arg TORCH_VERSION=1.9 .

To build other versions, select different Dockerfile.

docker image list
docker run --rm -it pytorch_lightning:devel-torch1.9 bash
docker image rm pytorch_lightning:devel-torch1.9