62 lines
2.1 KiB
Python
62 lines
2.1 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import torch
|
|
|
|
from pytorch_lightning.core import LightningModule
|
|
try:
|
|
from apex import amp
|
|
except ImportError:
|
|
APEX_AVAILABLE = False
|
|
else:
|
|
APEX_AVAILABLE = True
|
|
|
|
|
|
class GPUBackend(object):
|
|
|
|
def __init__(self, trainer):
|
|
self.trainer = trainer
|
|
|
|
def setup(self, model):
|
|
|
|
# call setup
|
|
if not self.trainer.testing:
|
|
self.trainer.setup('fit')
|
|
model.setup('fit')
|
|
|
|
model.cuda(self.trainer.root_gpu)
|
|
|
|
# CHOOSE OPTIMIZER
|
|
# allow for lr schedulers as well
|
|
optimizers, lr_schedulers, optimizer_frequencies = self.trainer.init_optimizers(model)
|
|
self.trainer.optimizers = optimizers
|
|
self.trainer.lr_schedulers = lr_schedulers
|
|
self.trainer.optimizer_frequencies = optimizer_frequencies
|
|
|
|
# TODO: remove with dropping NVIDIA AMP support
|
|
native_amp_available = hasattr(torch.cuda, "amp") and hasattr(torch.cuda.amp, "autocast")
|
|
if APEX_AVAILABLE and self.trainer.use_amp and not native_amp_available:
|
|
model = self._setup_nvidia_apex(model)
|
|
return model
|
|
|
|
def train(self, model):
|
|
results = self.trainer.run_pretrain_routine(model)
|
|
return results
|
|
|
|
def _setup_nvidia_apex(self, model: LightningModule):
|
|
model, optimizers = model.configure_apex(amp, model, self.trainer.optimizers, self.trainer.amp_level)
|
|
self.trainer.optimizers = optimizers
|
|
self.trainer.reinit_scheduler_properties(self.trainer.optimizers, self.trainer.lr_schedulers)
|
|
return model
|