# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from pytorch_lightning.core import LightningModule try: from apex import amp except ImportError: APEX_AVAILABLE = False else: APEX_AVAILABLE = True class GPUBackend(object): def __init__(self, trainer): self.trainer = trainer def setup(self, model): # call setup if not self.trainer.testing: self.trainer.setup('fit') model.setup('fit') model.cuda(self.trainer.root_gpu) # CHOOSE OPTIMIZER # allow for lr schedulers as well optimizers, lr_schedulers, optimizer_frequencies = self.trainer.init_optimizers(model) self.trainer.optimizers = optimizers self.trainer.lr_schedulers = lr_schedulers self.trainer.optimizer_frequencies = optimizer_frequencies # TODO: remove with dropping NVIDIA AMP support native_amp_available = hasattr(torch.cuda, "amp") and hasattr(torch.cuda.amp, "autocast") if APEX_AVAILABLE and self.trainer.use_amp and not native_amp_available: model = self._setup_nvidia_apex(model) return model def train(self, model): results = self.trainer.run_pretrain_routine(model) return results def _setup_nvidia_apex(self, model: LightningModule): model, optimizers = model.configure_apex(amp, model, self.trainer.optimizers, self.trainer.amp_level) self.trainer.optimizers = optimizers self.trainer.reinit_scheduler_properties(self.trainer.optimizers, self.trainer.lr_schedulers) return model