lightning/tests/tests_pytorch/plugins/test_checkpoint_io_plugin.py

153 lines
6.0 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from pathlib import Path
from typing import Any, Dict, Optional
from unittest.mock import MagicMock, Mock
import torch
from lightning_lite.plugins import CheckpointIO, TorchCheckpointIO
from lightning_lite.utilities.types import _PATH
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.demos.boring_classes import BoringModel
from pytorch_lightning.plugins.io.async_plugin import AsyncCheckpointIO
from pytorch_lightning.strategies import SingleDeviceStrategy
class CustomCheckpointIO(CheckpointIO):
def save_checkpoint(self, checkpoint: Dict[str, Any], path: _PATH, storage_options: Optional[Any] = None) -> None:
torch.save(checkpoint, path)
def load_checkpoint(self, path: _PATH, storage_options: Optional[Any] = None) -> Dict[str, Any]:
return torch.load(path)
def remove_checkpoint(self, path: _PATH) -> None:
os.remove(path)
def test_checkpoint_plugin_called(tmpdir):
"""Ensure that the custom checkpoint IO plugin and torch checkpoint IO plugin is called when saving/loading."""
checkpoint_plugin = CustomCheckpointIO()
checkpoint_plugin = MagicMock(wraps=checkpoint_plugin, spec=CustomCheckpointIO)
ck = ModelCheckpoint(dirpath=tmpdir, save_last=True)
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
strategy=SingleDeviceStrategy("cpu", checkpoint_io=checkpoint_plugin),
callbacks=ck,
max_epochs=2,
limit_train_batches=1,
limit_val_batches=0,
limit_test_batches=1,
)
trainer.fit(model)
ckpt_files = {fn.name for fn in Path(tmpdir).glob("*.ckpt")}
assert ckpt_files == {"epoch=1-step=2.ckpt", "last.ckpt"}
assert trainer.checkpoint_callback.best_model_path == tmpdir / "epoch=1-step=2.ckpt"
assert trainer.checkpoint_callback.last_model_path == tmpdir / "last.ckpt"
assert checkpoint_plugin.save_checkpoint.call_count == 4
assert checkpoint_plugin.remove_checkpoint.call_count == 1
trainer.test(model, ckpt_path=ck.last_model_path)
checkpoint_plugin.load_checkpoint.assert_called_with(tmpdir / "last.ckpt")
checkpoint_plugin.reset_mock()
ck = ModelCheckpoint(dirpath=tmpdir, save_last=True)
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
strategy=SingleDeviceStrategy("cpu"),
plugins=[checkpoint_plugin],
callbacks=ck,
max_epochs=2,
limit_train_batches=1,
limit_val_batches=0,
limit_test_batches=1,
)
trainer.fit(model)
ckpt_files = {fn.name for fn in Path(tmpdir).glob("*.ckpt")}
assert ckpt_files == {"epoch=1-step=2.ckpt", "last.ckpt", "epoch=1-step=2-v1.ckpt", "last-v1.ckpt"}
assert trainer.checkpoint_callback.best_model_path == tmpdir / "epoch=1-step=2-v1.ckpt"
assert trainer.checkpoint_callback.last_model_path == tmpdir / "last-v1.ckpt"
assert checkpoint_plugin.save_checkpoint.call_count == 4
assert checkpoint_plugin.remove_checkpoint.call_count == 1
trainer.test(model, ckpt_path=ck.last_model_path)
checkpoint_plugin.load_checkpoint.assert_called_once()
checkpoint_plugin.load_checkpoint.assert_called_with(tmpdir / "last-v1.ckpt")
def test_async_checkpoint_plugin(tmpdir):
"""Ensure that the custom checkpoint IO plugin and torch checkpoint IO plugin is called when async saving and
loading."""
checkpoint_plugin = AsyncCheckpointIO()
checkpoint_plugin.save_checkpoint = Mock(wraps=checkpoint_plugin.save_checkpoint)
checkpoint_plugin.remove_checkpoint = Mock(wraps=checkpoint_plugin.remove_checkpoint)
class CustomBoringModel(BoringModel):
def on_fit_start(self):
base_ckpt_io = self.trainer.strategy.checkpoint_io.checkpoint_io
base_ckpt_io.save_checkpoint = Mock(wraps=base_ckpt_io.save_checkpoint)
base_ckpt_io.remove_checkpoint = Mock(wraps=base_ckpt_io.remove_checkpoint)
ck = ModelCheckpoint(dirpath=tmpdir, save_top_k=2, monitor="step", mode="max")
model = CustomBoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
plugins=[checkpoint_plugin],
callbacks=ck,
max_epochs=3,
limit_train_batches=1,
limit_val_batches=0,
enable_progress_bar=False,
enable_model_summary=False,
)
trainer.fit(model)
assert checkpoint_plugin.save_checkpoint.call_count == 3
assert checkpoint_plugin.remove_checkpoint.call_count == 1
base_ckpt_io = trainer.strategy.checkpoint_io.checkpoint_io
assert base_ckpt_io.save_checkpoint.call_count == 3
assert base_ckpt_io.remove_checkpoint.call_count == 1
def test_multi_wrapped_checkpoint_io_initialization():
base_ckpt_io = TorchCheckpointIO()
wrap_ckpt = AsyncCheckpointIO(base_ckpt_io)
ckpt_io = AsyncCheckpointIO(wrap_ckpt)
assert ckpt_io.checkpoint_io is wrap_ckpt
assert ckpt_io.checkpoint_io.checkpoint_io is base_ckpt_io
assert ckpt_io._base_checkpoint_io_configured is True
assert ckpt_io.checkpoint_io._base_checkpoint_io_configured is True
wrap_ckpt = AsyncCheckpointIO()
ckpt_io = AsyncCheckpointIO(wrap_ckpt)
trainer = Trainer(accelerator="cpu", plugins=[ckpt_io])
trainer.strategy.checkpoint_io
assert ckpt_io.checkpoint_io is wrap_ckpt
assert isinstance(ckpt_io.checkpoint_io.checkpoint_io, TorchCheckpointIO)
assert ckpt_io._base_checkpoint_io_configured is True
assert ckpt_io.checkpoint_io._base_checkpoint_io_configured is True