# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from pathlib import Path from typing import Any, Dict, Optional from unittest.mock import MagicMock, Mock import torch from lightning_lite.plugins import CheckpointIO, TorchCheckpointIO from lightning_lite.utilities.types import _PATH from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.demos.boring_classes import BoringModel from pytorch_lightning.plugins.io.async_plugin import AsyncCheckpointIO from pytorch_lightning.strategies import SingleDeviceStrategy class CustomCheckpointIO(CheckpointIO): def save_checkpoint(self, checkpoint: Dict[str, Any], path: _PATH, storage_options: Optional[Any] = None) -> None: torch.save(checkpoint, path) def load_checkpoint(self, path: _PATH, storage_options: Optional[Any] = None) -> Dict[str, Any]: return torch.load(path) def remove_checkpoint(self, path: _PATH) -> None: os.remove(path) def test_checkpoint_plugin_called(tmpdir): """Ensure that the custom checkpoint IO plugin and torch checkpoint IO plugin is called when saving/loading.""" checkpoint_plugin = CustomCheckpointIO() checkpoint_plugin = MagicMock(wraps=checkpoint_plugin, spec=CustomCheckpointIO) ck = ModelCheckpoint(dirpath=tmpdir, save_last=True) model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, strategy=SingleDeviceStrategy("cpu", checkpoint_io=checkpoint_plugin), callbacks=ck, max_epochs=2, limit_train_batches=1, limit_val_batches=0, limit_test_batches=1, ) trainer.fit(model) ckpt_files = {fn.name for fn in Path(tmpdir).glob("*.ckpt")} assert ckpt_files == {"epoch=1-step=2.ckpt", "last.ckpt"} assert trainer.checkpoint_callback.best_model_path == tmpdir / "epoch=1-step=2.ckpt" assert trainer.checkpoint_callback.last_model_path == tmpdir / "last.ckpt" assert checkpoint_plugin.save_checkpoint.call_count == 4 assert checkpoint_plugin.remove_checkpoint.call_count == 1 trainer.test(model, ckpt_path=ck.last_model_path) checkpoint_plugin.load_checkpoint.assert_called_with(tmpdir / "last.ckpt") checkpoint_plugin.reset_mock() ck = ModelCheckpoint(dirpath=tmpdir, save_last=True) model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, strategy=SingleDeviceStrategy("cpu"), plugins=[checkpoint_plugin], callbacks=ck, max_epochs=2, limit_train_batches=1, limit_val_batches=0, limit_test_batches=1, ) trainer.fit(model) ckpt_files = {fn.name for fn in Path(tmpdir).glob("*.ckpt")} assert ckpt_files == {"epoch=1-step=2.ckpt", "last.ckpt", "epoch=1-step=2-v1.ckpt", "last-v1.ckpt"} assert trainer.checkpoint_callback.best_model_path == tmpdir / "epoch=1-step=2-v1.ckpt" assert trainer.checkpoint_callback.last_model_path == tmpdir / "last-v1.ckpt" assert checkpoint_plugin.save_checkpoint.call_count == 4 assert checkpoint_plugin.remove_checkpoint.call_count == 1 trainer.test(model, ckpt_path=ck.last_model_path) checkpoint_plugin.load_checkpoint.assert_called_once() checkpoint_plugin.load_checkpoint.assert_called_with(tmpdir / "last-v1.ckpt") def test_async_checkpoint_plugin(tmpdir): """Ensure that the custom checkpoint IO plugin and torch checkpoint IO plugin is called when async saving and loading.""" checkpoint_plugin = AsyncCheckpointIO() checkpoint_plugin.save_checkpoint = Mock(wraps=checkpoint_plugin.save_checkpoint) checkpoint_plugin.remove_checkpoint = Mock(wraps=checkpoint_plugin.remove_checkpoint) class CustomBoringModel(BoringModel): def on_fit_start(self): base_ckpt_io = self.trainer.strategy.checkpoint_io.checkpoint_io base_ckpt_io.save_checkpoint = Mock(wraps=base_ckpt_io.save_checkpoint) base_ckpt_io.remove_checkpoint = Mock(wraps=base_ckpt_io.remove_checkpoint) ck = ModelCheckpoint(dirpath=tmpdir, save_top_k=2, monitor="step", mode="max") model = CustomBoringModel() trainer = Trainer( default_root_dir=tmpdir, plugins=[checkpoint_plugin], callbacks=ck, max_epochs=3, limit_train_batches=1, limit_val_batches=0, enable_progress_bar=False, enable_model_summary=False, ) trainer.fit(model) assert checkpoint_plugin.save_checkpoint.call_count == 3 assert checkpoint_plugin.remove_checkpoint.call_count == 1 base_ckpt_io = trainer.strategy.checkpoint_io.checkpoint_io assert base_ckpt_io.save_checkpoint.call_count == 3 assert base_ckpt_io.remove_checkpoint.call_count == 1 def test_multi_wrapped_checkpoint_io_initialization(): base_ckpt_io = TorchCheckpointIO() wrap_ckpt = AsyncCheckpointIO(base_ckpt_io) ckpt_io = AsyncCheckpointIO(wrap_ckpt) assert ckpt_io.checkpoint_io is wrap_ckpt assert ckpt_io.checkpoint_io.checkpoint_io is base_ckpt_io assert ckpt_io._base_checkpoint_io_configured is True assert ckpt_io.checkpoint_io._base_checkpoint_io_configured is True wrap_ckpt = AsyncCheckpointIO() ckpt_io = AsyncCheckpointIO(wrap_ckpt) trainer = Trainer(accelerator="cpu", plugins=[ckpt_io]) trainer.strategy.checkpoint_io assert ckpt_io.checkpoint_io is wrap_ckpt assert isinstance(ckpt_io.checkpoint_io.checkpoint_io, TorchCheckpointIO) assert ckpt_io._base_checkpoint_io_configured is True assert ckpt_io.checkpoint_io._base_checkpoint_io_configured is True