123 lines
4.0 KiB
Python
123 lines
4.0 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
from torchmetrics import Accuracy, MeanSquaredError
|
|
|
|
from pytorch_lightning import LightningModule
|
|
|
|
|
|
class ClassificationModel(LightningModule):
|
|
def __init__(self, lr=0.01):
|
|
super().__init__()
|
|
|
|
self.lr = lr
|
|
for i in range(3):
|
|
setattr(self, f"layer_{i}", nn.Linear(32, 32))
|
|
setattr(self, f"layer_{i}a", torch.nn.ReLU())
|
|
setattr(self, "layer_end", nn.Linear(32, 3))
|
|
|
|
self.train_acc = Accuracy()
|
|
self.valid_acc = Accuracy()
|
|
self.test_acc = Accuracy()
|
|
|
|
def forward(self, x):
|
|
x = self.layer_0(x)
|
|
x = self.layer_0a(x)
|
|
x = self.layer_1(x)
|
|
x = self.layer_1a(x)
|
|
x = self.layer_2(x)
|
|
x = self.layer_2a(x)
|
|
x = self.layer_end(x)
|
|
logits = F.softmax(x, dim=1)
|
|
return logits
|
|
|
|
def configure_optimizers(self):
|
|
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
|
|
return [optimizer], []
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
logits = self.forward(x)
|
|
loss = F.cross_entropy(logits, y)
|
|
self.log("train_loss", loss, prog_bar=True)
|
|
self.log("train_acc", self.train_acc(logits, y), prog_bar=True)
|
|
return {"loss": loss}
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
logits = self.forward(x)
|
|
self.log("val_loss", F.cross_entropy(logits, y), prog_bar=False)
|
|
self.log("val_acc", self.valid_acc(logits, y), prog_bar=True)
|
|
|
|
def test_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
logits = self.forward(x)
|
|
self.log("test_loss", F.cross_entropy(logits, y), prog_bar=False)
|
|
self.log("test_acc", self.test_acc(logits, y), prog_bar=True)
|
|
|
|
def predict_step(self, batch, batch_idx):
|
|
x, _ = batch
|
|
return self.forward(x)
|
|
|
|
|
|
class RegressionModel(LightningModule):
|
|
def __init__(self):
|
|
super().__init__()
|
|
setattr(self, "layer_0", nn.Linear(16, 64))
|
|
setattr(self, "layer_0a", torch.nn.ReLU())
|
|
for i in range(1, 3):
|
|
setattr(self, f"layer_{i}", nn.Linear(64, 64))
|
|
setattr(self, f"layer_{i}a", torch.nn.ReLU())
|
|
setattr(self, "layer_end", nn.Linear(64, 1))
|
|
|
|
self.train_mse = MeanSquaredError()
|
|
self.valid_mse = MeanSquaredError()
|
|
self.test_mse = MeanSquaredError()
|
|
|
|
def forward(self, x):
|
|
x = self.layer_0(x)
|
|
x = self.layer_0a(x)
|
|
x = self.layer_1(x)
|
|
x = self.layer_1a(x)
|
|
x = self.layer_2(x)
|
|
x = self.layer_2a(x)
|
|
x = self.layer_end(x)
|
|
return x
|
|
|
|
def configure_optimizers(self):
|
|
optimizer = torch.optim.Adam(self.parameters(), lr=0.01)
|
|
return [optimizer], []
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
out = self.forward(x)
|
|
loss = F.mse_loss(out, y)
|
|
self.log("train_loss", loss, prog_bar=False)
|
|
self.log("train_MSE", self.train_mse(out, y), prog_bar=True)
|
|
return {"loss": loss}
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
out = self.forward(x)
|
|
self.log("val_loss", F.mse_loss(out, y), prog_bar=False)
|
|
self.log("val_MSE", self.valid_mse(out, y), prog_bar=True)
|
|
|
|
def test_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
out = self.forward(x)
|
|
self.log("test_loss", F.mse_loss(out, y), prog_bar=False)
|
|
self.log("test_MSE", self.test_mse(out, y), prog_bar=True)
|